首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5076篇
  免费   1075篇
  国内免费   1959篇
测绘学   100篇
大气科学   339篇
地球物理   2398篇
地质学   3519篇
海洋学   789篇
天文学   14篇
综合类   324篇
自然地理   627篇
  2024年   9篇
  2023年   59篇
  2022年   140篇
  2021年   171篇
  2020年   210篇
  2019年   287篇
  2018年   261篇
  2017年   236篇
  2016年   287篇
  2015年   279篇
  2014年   325篇
  2013年   424篇
  2012年   311篇
  2011年   370篇
  2010年   324篇
  2009年   391篇
  2008年   364篇
  2007年   402篇
  2006年   385篇
  2005年   322篇
  2004年   305篇
  2003年   255篇
  2002年   222篇
  2001年   185篇
  2000年   223篇
  1999年   200篇
  1998年   175篇
  1997年   162篇
  1996年   157篇
  1995年   117篇
  1994年   112篇
  1993年   90篇
  1992年   89篇
  1991年   47篇
  1990年   51篇
  1989年   33篇
  1988年   34篇
  1987年   21篇
  1986年   16篇
  1985年   17篇
  1984年   10篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1979年   6篇
  1977年   8篇
  1976年   2篇
  1954年   6篇
排序方式: 共有8110条查询结果,搜索用时 542 毫秒
211.
Sequential aerial photography, sonar bathymetry, ground-penetrating radar (GPR), and sediment sampling and analysis provide the basis for calculating the volumetric and mass rate of progradation of the delta of Fitzsimmons Creek, a steep, high-energy, debris-flow-dominated channel draining about 100 km2 of the southern Coast Mountains of British Columbia. Fitzsimmons Creek is typical of small mountain rivers in the region. GPR imaging is used to define the pre-depositional morphology of the receiving basin, a technique that improves the accuracy of the volumetric survey. The 52-year record (1947–1999) of progradation yielded an average annual volumetric transport rate of 1.00±0.16×104 m3 year−1 for bed load, corresponding to a mass transport rate of 1.60±0.28×104 Mg year−1. Bed load yields are consistent with those obtained in hydrogeomorphically similar basins in the region and elsewhere. Decade-based annual rates, which vary from 0.64±0.11×104 to 2.85±0.38×104 Mg year−1, provide poor estimates of the 52-year average. Indeed, the 52-year record may also not be long enough to fully integrate the significant fluctuations in the sediment efflux from Fitzsimmons Creek. The methodology proposed in this paper can be transferred to other comparable mountain environments worldwide.  相似文献   
212.
High‐resolution historical (1942) and recent (1994) digital terrain models were derived from aerial photographs along the Big Sur coastline in central California to measure the long‐term volume of material that enters the nearshore environment. During the 52‐year measurement time period, an average of 21 000 ± 3100 m3 km?1 a?1 of material was eroded from nine study sections distributed along the coast, with a low yield of 1000 ± 240 m3 km?1 a?1 and a high of 46 700 ± 7300 m3 km?1 a?1. The results compare well with known volumes from several deep‐seated landslides in the area and suggest that the processes by which material is delivered to the coast are episodic in nature. In addition, a number of parameters are investigated to determine what influences the substantial variation in yield along the coast. It is found that the magnitude of regional coastal landslide sediment yield is primarily related to the physical strength of the slope‐forming material. Coastal Highway 1 runs along the lower portion of the slope along this stretch of coastline, and winter storms frequently damage the highway. The California Department of Transportation is responsible for maintaining this scenic highway while minimizing the impacts to the coastal ecosystems that are part of the Monterey Bay National Marine Sanctuary. This study provides environmental managers with critical background data on the volumes of material that historically enter the nearshore from landslides, as well as demonstrating the application of deriving historical digital terrain data to model landscape evolution. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   
213.
Proglacial suspended sediment transport was monitored at Haut Glacier d'Arolla, Switzerland, during the 1998 melt season to investigate the mechanisms of basal sediment evacuation by subglacial meltwater. Sub‐seasonal changes in relationships between suspended sediment transport and discharge demonstrate that the structure and hydraulics of the subglacial drainage system critically influenced how basal sediment was accessed and entrained. Under hydraulically inefficient subglacial drainage at the start of the melt season, sediment availability was generally high but sediment transport increased relatively slowly with discharge. Later in the melt season, sediment transport increased more rapidly with discharge as subglacial meltwater became confined to a spatially limited network of channels following removal of the seasonal snowpack from the ablation area. Flow capacity is inferred to have increased more rapidly with discharge within subglacial channels because rapid changes in discharge during highly peaked diurnal runoff cycles are likely to have been accommodated largely by changes in flow velocity. Basal sediment availability declined during channelization but increased throughout the remainder of the monitored period, resulting in very efficient basal sediment evacuation over the peak of the melt season. Increased basal sediment availability during the summer appears to have been linked to high diurnal water pressure variation within subglacial channels inferred from the strong increase in flow velocity with discharge. Basal sediment availability therefore appears likely to have been increased by (1) enhanced local ice‐bed separation leading to extra‐channel flow excursions and[sol ]or (2) the deformation of basal sediment towards low‐pressure channels due to a strong diurnally reversing hydraulic gradient between channels and areas of hydraulically less‐efficient drainage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
214.
白云岩成岩收缩晶间孔、洞、缝与构造网状缝相互沟通可以组成良好的油气储层,但是这种复杂裂缝—孔隙型储层分布随机性强、发育程度和差异性大,储层预测难度大。本文以中国西部酒泉盆地青西油田下白垩统下沟组湖相白云岩裂缝—孔隙型储层为例,提出地球物理综合预测碳酸盐岩裂缝的方法。本文描述了综合地球物理方法预测碳酸盐岩裂缝储层的实施和应用效果。  相似文献   
215.
Introduction The Great North China, located at longitude 106E to 124E and latitude 31N to 42N, in-cludes three secondary active tectonic blocks, Ordos, Yanshan and North China plain (Figure 1). The geological tectonics of these three secondary blocks is much different from each other. As a stable block with high rigidity, the Ordos block is mostly surrounded by down-faulted basins with an inactive interior since Cenozoic, although the fault zones along its boundary are strongly active wi…  相似文献   
216.
~~Preliminary study on variation characteristics of ocean tide dynamic stress in crust and its relationship with earthquakes@陆明勇$China Center for Earthquake Disaster Emergency and SAR,Beijing 100049,China @郑文衡$Huazhong University of Science and Technology,Wuhan 430074,China①Strong earthquake catalogues in China. Earthquake catalogues reported monthly by Center for Analysis and Prediction, CEA. ①YI Zhi-gang. Institute of Crustal Dynamics, China Earthquake Administrati…  相似文献   
217.
Introduction The acceleration response spectrum and peak ground acceleration are the necessary and im-portant parameters in earthquake-resistant design at present. They are still active research field. With the increase of digital high accurate strong motion observation data, especially the earth-quakes of Loma Prieta (M=7.0) in 1989; Landers (M=7.3) in 1992; Big Bear (M=6.4) in 1994 and Northridge (M=6.7) in 1994 in USA; Kozani (M=6.6) earthquake and afteshocks in 1995 in Greece; Dinar…  相似文献   
218.
The alpine meadow is widely distributed on the Tibetan Plateau with an area of about 1.2×106kn2. Damxung County, located in the hinterland of the Tibetan Plateau, is the place covered with this typical vegetation. An open-path eddy covariance system was set up in Damxung rangeland station to measure the carbon flux of alpine meadow from July to October,2003. The continuous carbon flux data were used to analyze the relationship between net ecosystem carbon dioxide exchange (NEE) and photosynthetically active radiation (PAR), as well as the seasonal patterns of apparent quantum yield (α) and maximum ecosystem assimilation (Pmax).Results showed that the daytime NEE fitted fairly well with the PAR in a rectangular hyperbola function, with α declining in the order of peak growth period (0.0244 μmolCO2 · μmol-1pAR) >early growth period > seed maturing period > withering period (0.0098 μmolCO2 · μmol-1pAR).The Pmax did not change greatly during the first three periods, with an average of 0.433mgCO2· m-2· s-1, i.e. 9.829 μmolCO2· m-2· s-1. However, during the withering period, Pmax was only 0.35 mgCO2 · m-2 · s-1, i.e. 7.945 μmolCO2 · m-2 · s-1. Compared with other grassland ecosystems, the α of the Tibetan Plateau alpine meadow ecosystem was much lower.  相似文献   
219.
Our aim is the prediction of the accumulation of strain and/or stress under cyclic loading with many (thousands to millions) cycles and relatively small amplitudes. A high-cycle constitutive model is used for this purpose. Its formulas are based on numerous cyclic tests. This paper describes drained tests with triaxial compression and uniaxial stress cycles. The influence of the strain amplitude, the average stress, the density, the cyclic preloading history and the grain size distribution on the direction and the intensity of strain accumulation is discussed.  相似文献   
220.
Caldera formation has been explained by magma withdrawal from a crustal reservoir, but little is known about the conditions that lead to the critical reservoir pressure for collapse. During an eruption, the reservoir pressure is constrained to lie within a finite range: it cannot exceed the threshold value for eruption, and cannot decrease below another threshold value such that feeder dykes get shut by the confining pressure, which stops the eruption. For caldera collapse to occur, the critical reservoir pressure for roof failure must therefore be within this operating range. We use an analytical elastic model to evaluate the changes of reservoir pressure that are required for failure of roof rocks above the reservoir with and without a volcanic edifice at Earth's surface. With no edifice at Earth's surface, faulting in the roof region can only occur in the initial phase of reservoir inflation and affects a very small part of the focal area. Such conditions do not allow caldera collapse. With a volcanic edifice, large tensile stresses develop in the roof region, whose magnitude increase as the reservoir deflates during an eruption. The edifice size must exceed a threshold value for failure of the roof region before the end of eruption. The largest tensile stresses are reached at Earth's surface, indicating that faulting starts there. Failure affects an area whose horizontal dimensions depend on edifice and chamber dimensions. For small and deep reservoirs, failure conditions cannot be achieved even if the edifice is very large. Quantitative predictions are consistent with observations on a number of volcanoes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号