首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6441篇
  免费   1257篇
  国内免费   2421篇
测绘学   460篇
大气科学   232篇
地球物理   1826篇
地质学   5870篇
海洋学   764篇
天文学   104篇
综合类   431篇
自然地理   432篇
  2024年   36篇
  2023年   100篇
  2022年   188篇
  2021年   242篇
  2020年   270篇
  2019年   371篇
  2018年   274篇
  2017年   296篇
  2016年   316篇
  2015年   349篇
  2014年   424篇
  2013年   428篇
  2012年   396篇
  2011年   441篇
  2010年   361篇
  2009年   483篇
  2008年   473篇
  2007年   516篇
  2006年   547篇
  2005年   404篇
  2004年   420篇
  2003年   360篇
  2002年   310篇
  2001年   306篇
  2000年   269篇
  1999年   253篇
  1998年   208篇
  1997年   196篇
  1996年   165篇
  1995年   141篇
  1994年   145篇
  1993年   103篇
  1992年   89篇
  1991年   53篇
  1990年   48篇
  1989年   44篇
  1988年   33篇
  1987年   30篇
  1986年   6篇
  1985年   7篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1954年   5篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
992.
In the present study an analytical procedure based on finite element technique is proposed to investigate the influence of vertical load on deflection and bending moment of a laterally loaded pile embedded in liquefiable soil, subjected to permanent ground displacement. The degradation of subgrade modulus due to soil liquefaction and effect of nonlinearity are also considered. A free headed vertical concrete elastic nonyielding pile with a floating tip subjected to vertical compressive loading, lateral load, and permanent ground displacement due to earthquake motions, in liquefiable soil underlain by nonliquefiable stratum, is considered. The input seismic motions, having varying range of ground motion parameters, considered here include 1989 Loma Gilroy, 1995 Kobe, 2001 Bhuj, and 2011 Sikkim motions. It is calculated that maximum bending moment occurred at the interface of liquefiable and nonliquefiable soil layers and when thickness of liquefiable soil layer is around 60% of total pile length. Maximum bending moment of 1210 kNm and pile head deflection of 110 cm is observed because of 1995 Kobe motion, while 2001 Bhuj and 2011 Sikkim motions amplify the pile head deflection by 14.2 and 14.4 times and bending moment approximately by 4 times, when compared to nonliquefiable soil. Further, the presence of inertial load at the pile head increases bending moment and deflection by approximately 52% when subjected to 1995 Kobe motion. Thus, it is necessary to have a proper assessment of both kinematic and inertial interactions due to free field seismic motions and vertical loads for evaluating pile response in liquefiable soil.  相似文献   
993.
基于大连长兴岛的一套完整的晚更新世黄土剖面(贺家圈剖面),应用端元分析模型,对所采集的21个沉积样品的粒度数据进行分析。结论认为:从贺家圈剖面沉积物粒级组分中可以分离出3个代表不同沉积动力以及改造作用的沉积端元组分。并结合地球化学元素的对比分析,初步认为:端元1可能代表了剖面原始的粒度沉积组分,主峰为近源沉积,次峰为远源沉积;端元2可能代表了沉积物在沉积之后受到的淋溶作用和残积作用;端元3可能代表的是沉积物沉积之后受到的化学风化作用。  相似文献   
994.
The paper presents closed‐form solutions for stress and displacement influence functions for stress discontinuity (SD) and displacement discontinuity (DD) elements, for a two‐dimensional plane‐strain elastic, transversely anisotropic medium. The solutions for SD elements are based on Kelvin's problem and for DD elements on the concept of dipoles. Stress and displacement influence functions are derived for the following elements: constant SD, linear SD, constant DD, linear DD, square root DD, parabolic DD, constant DD surface, and linear DD surface elements. The formulations are incorporated into FROCK, a hybridized boundary element method code, and are validated by providing comparisons between the results from FROCK and the finite element code ABAQUS. A limited parametric analysis shows the effects of slight anisotropy on the stress field around the tip of a crack and of the orientation of the crack with respect to the axes of elastic symmetry. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
995.
Rock failure is observed around boreholes often with certain types of failure zones, which are called breakouts. Laboratory‐scale drilling tests in some high‐porosity quartz‐rich sandstone have shown breakouts in the form of narrow localized compacted zones in the minimum horizontal stress direction. They are called fracture‐like breakouts. Such compaction bands may affect hydrocarbon extraction by forming barriers that inhibit fluid flow and may also be a source of sand production. This paper presents the results of numerical simulations of borehole breakouts using 3D discrete element method to investigate the mechanism of the fracture‐like breakouts and to identify the role of far‐field stresses on the breakout dimensions. The numerical tool was first verified against analytical solutions. It was then utilized to investigate the failure mechanism and breakout geometry for drilled cubic rock samples of Castlegate sandstone subjected to different pre‐existing far‐field stresses. Results show that failure occurs in the zones of the highest concentration of tangential stress around the borehole. It is concluded that fracture‐like breakout develops as a result of a nondilatant failure mechanism consisting of localized grain debonding and repacking and grain crushing that lead to the formation of a compaction band in the minimum horizontal stress direction. In addition, it is found that the length of fracture‐like breakouts depends on both the mean stress and stress anisotropy. However, the width of the breakout is not significantly changed by the far‐field stresses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
996.
The bonded discrete element model (DEM) is a numerical tool that is becoming widely used when studying fracturing, fragmentation, and failure of solids in various disciplines. However, its abilities to solve elastic problems are usually overlooked. In this work, the main features of the 2D bonded DEM which influence Poisson's ratio and Young's modulus, and accuracy when solving elastic boundary value problems, are investigated. Outputs of numerical simulations using the 2D bonded DEM, the finite element method, a hyper elasticity analysis, and the distinct lattice spring model (DLSM) are compared in the investigation. It is shown that a shear interaction (local) factor and a geometric (global) factor are two essential elements for the 2D bonded DEM to reproduce a full range of Poisson's ratios. It is also found that the 2D bonded DEM might be unable to reproduce the correct displacements for elastic boundary value problems when the represented Poisson's ratio is close to 0.5 or the long-range interaction is considered. In addition, an analytical relationship between the shear stiffness ratio and the Poisson's ratio, derived from a hyper elasticity analysis and applicable to discontinuum-based models, provides good agreement with outputs from the 2D bonded DEM and DLSM. Finally, it is shown that the selection of elastic parameters used the 2D bonded DEM has a significant effect on fracturing and fragment patterns of solids.  相似文献   
997.
A conceptual model of anisotropic and dynamic permeability is developed from hydrogeologic and hydromechanical characterization of a foliated, complexly fractured, crystalline rock aquifer at Gates Pond, Berlin, Massachusetts. Methods of investigation include aquifer‐pumping tests, long‐term hydrologic monitoring, fracture characterization, downhole heat‐pulse flow meter measurements, in situ extensometer testing, and earth tide analysis. A static conceptual model is developed from observations of depth‐dependent and anisotropic permeability that effectively compartmentalizes the aquifer as a function of foliation intensity. Superimposed on the static model is dynamic permeability as a function of hydraulic head in which transient bulk aquifer transmissivity is proportional to changes in hydraulic head due to hydromechanical coupling. The dynamic permeability concept is built on observations that fracture aperture changes as a function of hydraulic head, as measured during in situ extensometer testing of individual fractures, and observed changes in bulk aquifer transmissivity as determined from earth tides during seasonal changes in hydraulic head, with higher transmissivity during periods of high hydraulic head, and lower transmissivity during periods of relatively lower hydraulic head. A final conceptual model is presented that captures both the static and dynamic properties of the aquifer. The workflow presented here demonstrates development of a conceptual framework for building numerical models of complexly fractured, foliated, crystalline rock aquifers that includes both a static model to describe the spatial distribution of permeability as a function of fracture type and foliation intensity and a dynamic model that describes how hydromechanical coupling impacts permeability magnitude as a function of hydraulic head fluctuation. This model captures important geologic controls on permeability magnitude, anisotropy, and transience and therefor offers potentially more reliable history matching and forecasts of different water management strategies, such as resource evaluation, well placement, permeability prediction, and evaluating remediation strategies.  相似文献   
998.
The determination of in situ stresses is very important in petroleum engineering. Hydraulic fracturing is a widely accepted technique for the determination of in situ stresses nowadays. Unfortunately, the hydraulic fracturing test is time-consuming and expensive. Taking advantage of the shape of borehole breakouts measured from widely available caliper and image logs to determine in situ stress in petroleum engineering is highly attractive. By finite element modeling of borehole breakouts considering thermoporoelasticity, the authors simulate the process of borehole breakouts in terms of initiation, development, and stabilization under Mogi-Coulomb criterion and end up with the shape of borehole breakouts. Artificial neural network provides such a tool to establish the relationship between in situ stress and shape of borehole breakouts, which can be used to determine in situ stress based on different shape of borehole breakouts by inverse analysis. In this paper, two steps are taken to determine in situ stress by inverse analysis. First, sets of finite element modeling provide sets of data on in situ stress and borehole breakout measures considering the influence of drilling fluid temperature and pore pressure, which will be used to train an artificial neural network that can eventually represent the relationship between the in situ stress and borehole breakout measures. Second, for a given measure of borehole breakouts in a certain drilling fluid temperature, the trained artificial neural network will be used to predict the corresponding in situ stress. Results of numerical experiments show that the inverse analysis based on finite element modeling of borehole breakouts and artificial neural network is a promising method to determine in situ stress.  相似文献   
999.
传统的缓存置换策略未充分考虑数据访问的空间特征,也不适用于基于矢量瓦片的替换。该文根据矢量瓦片的空间数据结构,提出一种适用于矢量瓦片缓存替换的视点相关预测区域算法:首先根据瓦片存储中多分辨率金字塔结构进行空间单元划分,并根据用户操作类型求解矢量瓦片及空间单元热度,从而构建用户视点位置相关的预测区域;然后综合考虑瓦片层级、空间单元热度及距离等因素进行预测区域分析,获得瓦片缓存价值并进行瓦片置换。通过与传统的FIFO、LRU和LFU缓存策略相比较,该算法的瓦片命中率比FIFO和LRU分别提高了近50%和20%,瓦片的请求耗时分别缩短了50%和30%左右,相比LFU也有明显优势。该研究为WebGIS提供了一种更具潜力的瓦片缓存方法。  相似文献   
1000.
别也萨麻斯矿床是目前新发现的分布在新疆北阿尔泰以Li矿化为主的花岗伟晶岩型稀有金属矿床,具有独特性和代表性。矿区发育Li-Nb-Ta矿化和Nb-Ta矿化两类伟晶岩,二云母二长花岗岩是含矿伟晶岩脉群的直接围岩。在系统的野外地质特征调查(包括野外露头和钻孔岩芯赋矿岩系、矿化特征、蚀变类型等的详细观察)基础上,对含矿伟晶岩和二云母二长花岗岩开展了LA-ICP-MS锆石U-Pb定年和原位Hf同位素研究。获得锆石206Pb/238U加权平均年龄分别为(151.0±1.8)Ma和(449.0±4.2)Ma,含矿伟晶岩形成于晚侏罗世,二云母二长花岗岩则形成于晚奥陶世。含矿伟晶岩和二云母二长花岗岩的εHf(t)值分别为0.62~1.30和1.35~6.07,二阶段Hf模式年龄为1161~1118 Ma和1345~1037 Ma。含矿伟晶岩的εHf(t)值较花岗岩小得多,二阶段Hf模式年龄与形成年龄的差值较花岗岩大得多,表明两者是阿尔泰造山带在不同演化阶段下的产物。悬殊的年龄差、不同的大地构造背景与不同的形成物源表明别也萨麻斯稀有金属矿床含矿伟晶岩与二云母二长花岗岩在成因上并无联系,近矿花岗岩围岩并非含矿伟晶岩脉的真正母体。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号