首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1312篇
  免费   98篇
  国内免费   411篇
测绘学   10篇
大气科学   9篇
地球物理   160篇
地质学   815篇
海洋学   86篇
天文学   663篇
综合类   26篇
自然地理   52篇
  2024年   4篇
  2023年   19篇
  2022年   25篇
  2021年   16篇
  2020年   25篇
  2019年   44篇
  2018年   32篇
  2017年   17篇
  2016年   41篇
  2015年   45篇
  2014年   68篇
  2013年   70篇
  2012年   60篇
  2011年   85篇
  2010年   80篇
  2009年   110篇
  2008年   105篇
  2007年   131篇
  2006年   126篇
  2005年   100篇
  2004年   75篇
  2003年   78篇
  2002年   74篇
  2001年   47篇
  2000年   45篇
  1999年   33篇
  1998年   69篇
  1997年   18篇
  1996年   18篇
  1995年   14篇
  1994年   21篇
  1993年   19篇
  1992年   13篇
  1991年   8篇
  1990年   20篇
  1989年   8篇
  1988年   13篇
  1987年   8篇
  1986年   8篇
  1985年   6篇
  1984年   4篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   6篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有1821条查询结果,搜索用时 15 毫秒
121.
Simulations of spheroidal systems with substructure: trees in fields   总被引:1,自引:0,他引:1  
We present a hybrid technique of N -body simulation to deal with collisionless stellar systems having an inhomogeneous global structure. We combine a treecode and a self-consistent field code such that each of the codes models a different component of the system being investigated. The treecode is suited to treatment of dynamically cold or clumpy components, which may undergo significant evolution within a dynamically hot system. The hot system is appropriately evolved by the self-consistent field code. This combined code is particularly suited to a number of problems in galactic dynamics. Applications of the code to these problems are briefly discussed.  相似文献   
122.
We performed N -body simulations of star cluster encounters with Hernquist's TREECODE in a CRAY YMP-2E computer under different initial conditions (relative positions and velocities, cluster sizes, masses and concentration degrees). The total number of particles per simulation ranged from 1024 to 20480. These models are compared with a series of isodensity maps of cluster pairs in the Magellanic Clouds. Evidence is found that during the interactions, transient morphological effects such as an expanded halo, isophotal deformation and isophotal twisting can occur as a result of tidal effects and dynamical friction. The simulations also show that different outcomes are possible depending on the initial parameters: (i) long-standing changes of concentration degree can occur after the collision; (ii) one member can disaggregate; or (iii) the pair can coalesce into a single cluster with a distinct structure compared with the original ones. These simulations can reproduce a wide range of morphological structures in observed cluster pairs.  相似文献   
123.
We determine the response of a self-similar isothermal stellar system to small adiabatic gravitational perturbations. For odd spherical harmonics the response is identical to the response of the analogous isothermal fluid system. For even spherical harmonics the response can be regarded as an infinite series of wavetrains in log r , implying alternating compression and rarefaction in equal logarithmic radius intervals. Partly because of the oscillatory nature of the solutions, tidal fields from external sources are not strongly amplified by an intervening isothermal stellar system, except at radii ≲10−3.5 times the satellite radius; at some radii the stellar system can even screen the external tidal field in a manner analogous to Debye screening. As Weinberg has pointed out, individual resonances in a stellar system can strongly amplify external tidal fields over a limited radial range, but we cannot address this possibility because we examine only adiabatic perturbations. We also discuss the application of our method to the halo response caused by the slow growth of an embedded thin disc.  相似文献   
124.
On a time-symmetric Hermite integrator for planetary N-body simulation   总被引:2,自引:0,他引:2  
We describe a P(EC) n Hermite scheme for planetary N -body simulation. The fourth-order implicit Hermite scheme is a time-symmetric integrator that has no secular energy error for the integration of periodic orbits with time-symmetric time-steps. In general N -body problems, however, this advantage is of little practical significance, since it is difficult to achieve time-symmetry with individual variable time-steps. However, we can easily enjoy the benefit of the time-symmetric Hermite integrator in planetary N -body systems, where all bodies spend most of the time on nearly circular orbits. These orbits are integrated with almost constant time-steps even if we adopt the individual time-step scheme. The P(EC) n Hermite scheme and almost constant time-steps reduce the integration error greatly. For example, the energy error of the P(EC)2 Hermite scheme is two orders of magnitude smaller than that of the standard PEC Hermite scheme in the case of an N  = 100,  m  = 1025 g planetesimal system with the rms eccentricity 〈 e 21/2 ≲0.03.  相似文献   
125.
Orbit classification in arbitrary 2D and 3D potentials   总被引:1,自引:0,他引:1  
A method of classifying generic orbits in arbitrary 2D and 3D potentials is presented. It is based on the concept of spectral dynamics introduced by Binney &38; Spergel that uses the Fourier transform of the time series of each coordinate. The method is tested using a number of potentials previously studied in the literature and is shown to distinguish correctly between regular and irregular orbits, to identify the various families of regular orbits (boxes, loops, tubes, boxlets, etc.), and to recognize the second-rank resonances that bifurcate from them. The method returns the position of the potential centre and, for 2D potentials, the orientation of the principal axes as well, should this be unknown. A further advantage of the method is that it has been encoded in a FORTRAN program that does not require user intervention, except for 'fine tuning' of search parameters that define the numerical limits of the code. The automatic character makes the program suitable for classifying large numbers of orbits.  相似文献   
126.
Frequency map analysis of the orbital structure in elliptical galaxies   总被引:1,自引:0,他引:1  
We present an application of the frequency map analysis to an elliptical galaxy which is represented by a generalization of a double-power-law spherical mass model. The density distribution of this model varies as r −γ close to the centre and as r −4 at large radii. We study the case with γ = 1, which is known as the 'weak-cusp' model and which represents well the density profile of the 'core' galaxies observed by the Hubble Space Telescope . The final objective of our work is to improve our understanding of the dynamics of elliptical galaxies in a similar way to Merritt &38; Fridman, finding the regions of stochasticity, looking for resonances that might play an important role in sustaining the triaxial morphology, and analysing the diffusion of orbits. To this end, we use the frequency map analysis of Laskar, which has been applied widely in the field of celestial mechanics but which is a relatively new technique in the area of galactic dynamics. Finally, we show some useful features of this method in understanding the global dynamical structure of the system.  相似文献   
127.
The long-term evolution of stellar orbits bound to a massive centre is studied in order to understand the cores of star clusters in central regions of galaxies. Stellar trajectories undergo tiny perturbations, the origins of which are twofold: (i) the gravitational field of a thin gaseous disc surrounding the galactic centre, and (ii) cumulative drag arising from successive interactions of the stars with the material of the disc. Both effects are closely related because they depend on the total mass of the disc, assumed to be a small fraction of the central mass. It is shown that, in contrast to previous works, most of the retrograde (with respect to the disc) orbits are captured by the central object, presumably a massive black hole. Initially prograde orbits are also affected, so that statistical properties of the central star cluster in quasi-equilibrium may differ significantly from those deduced in previous analyses.  相似文献   
128.
In this paper we show the positional oscillation of a massive object in a dense stellar system by numerical N -body simulations. We found that the central massive object, which at first is placed at rest at the centre of the surrounding spherical stellar system, promptly departs from the centre and rotates in accordance with the rotation of the stellar system, if the stellar system has an appreciable rotation. This oscillatory motion continues for a long time because of the absence of dynamical friction. Such a long-lasting oscillation may explain the asymmetric structure observed in the centres of M31 and NGC 4486B, may cause the secular flow of gaseous elements distributed in the central regions of galaxies on to the massive object, and may ignite activity in the centres of galaxies.  相似文献   
129.
It has recently been shown by Rauch 38 Tremaine that the rate of angular momentum relaxation in nearly Keplerian star clusters is greatly increased by a process termed 'resonant relaxation'; it was also argued, via a series of scaling arguments, that tidal disruption of stars in galactic nuclei containing massive black holes could be noticeably enhanced by this process. We describe here the results of numerical simulations of resonant tidal disruption which quantitatively test the predictions made by Rauch 38 Tremaine. The simulation method is based on an N -body routine incorporating cloning of stars near the loss cone and a semirelativistic symplectic integration scheme. Normalized disruption rates for resonant and non-resonant nuclei are derived at orbital energies both above and below the critical energy, and the corresponding angular momentum distribution functions are found. The black hole mass above which resonant tidal disruption is quenched by relativistic precession is determined. We also briefly describe the discovery of chaos in the Wisdom–Holman symplectic integrator applied to highly eccentric orbits and propose a modified integration scheme that remains robust under these conditions. We find that resonant disruption rates exceed their non-resonant counterparts by an amount consistent with the predictions; in particular, we estimate the net tidal disruption rate for a fully resonant cluster to be about twice that of its non-resonant counterpart. No significant enhancement in rates is observed outside the critical radius. Relativistic quenching of the effect is found to occur for hole masses M  >  M Q  = (8 ± 3) × 107  M . The numerical results combined with the observed properties of galactic nuclei indicate that for most galaxies the resonant enhancement to tidal disruption rates will be very small.  相似文献   
130.
This paper reports on the in-plane normal modes in the self-consistent and the cut-out power-law discs. Although the cut-out discs are remarkably stable to bisymmetric perturbations, they are very susceptible to one-armed modes. For this harmonic, there is no inner Lindblad resonance, thus removing a powerful stabilizing influence. A physical mechanism for the generation of the one-armed instabilities is put forward. Incoming trailing waves are reflected as leading waves at the inner cut-out, thus completing the feedback for the swing-amplifier. Growing three-armed and four-armed modes occur only at very low temperatures. However, neutral m  = 3 and m  = 4 modes are possible at higher temperatures for some discs. The rotation curve index β has a marked effect on stability. For all azimuthal wavenumbers, any unstable modes persist to higher temperatures and grow more vigorously if the rotation curve is rising (β < 0) than if the rotation curve is falling (β > 0). If the central regions or outer parts of the disc are carved out more abruptly, any instabilities become more virulent. The self-consistent power-law discs possess a number of unusual stability properties. There is no natural time-scale in the self-consistent disc. If a mode is admitted at some pattern speed and growth rate, then it must be present at all pattern speeds and growth rates. Our analysis — although falling short of a complete proof — suggests that such a two-dimensional continuum of non-axisymmetric modes does not occur and that the self-consistent power-law discs admit no global non-axisymmetric normal modes whatsoever. Without reflecting boundaries or cut-outs, there is no resonant cavity and no possibility of unstable growing modes. The self-consistent power-law discs certainly admit equi-angular spirals as neutral modes, together with a one-dimensional continuum of growing axisymmetric modes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号