首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1726篇
  免费   117篇
  国内免费   89篇
测绘学   74篇
大气科学   34篇
地球物理   139篇
地质学   268篇
海洋学   80篇
天文学   1165篇
综合类   29篇
自然地理   143篇
  2024年   11篇
  2023年   17篇
  2022年   21篇
  2021年   23篇
  2020年   23篇
  2019年   20篇
  2018年   10篇
  2017年   14篇
  2016年   14篇
  2015年   37篇
  2014年   54篇
  2013年   58篇
  2012年   54篇
  2011年   69篇
  2010年   74篇
  2009年   136篇
  2008年   128篇
  2007年   124篇
  2006年   136篇
  2005年   147篇
  2004年   130篇
  2003年   108篇
  2002年   95篇
  2001年   76篇
  2000年   71篇
  1999年   75篇
  1998年   81篇
  1997年   25篇
  1996年   22篇
  1995年   18篇
  1994年   9篇
  1993年   12篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   5篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
排序方式: 共有1932条查询结果,搜索用时 15 毫秒
191.
We present continuous and time‐resolved R = 55 000 optical échelle spectroscopy of ε Aurigae from 2006–2013. Data were taken with the STELLA Echelle Spectrograph of the robotic STELLA facility at the Observatorio del Teide in Tenerife. Contemporaneous photometry with the Automatic Photoelectric Telescopes at Fairborn Observatory in Arizona is presented for the years 1996–2013. Spectroscopic observations started three years prior to the photometric eclipse and are still ongoing. A total of 474 high‐resolution échelle spectra are analyzed and made available in this paper. We identify 368 absorption lines of which 161 lines show the characteristic sharp disk lines during eclipse. Another 207 spectral lines appeared nearly unaffected by the eclipse. From spectrum synthesis, we obtained the supergiant atmospheric parameters Teff = 7395 ± 70 K, log g ≈ 1, and [Fe/H] = +0.02 ± 0.2 with ξt = 9 km s–1, ζRT = 13 km s–1, and v sin i = 28 ± 3 km s–1. The residual average line broadening expressed in km s–1 varies with a period of 62.6 ± 0.7 d, in particular at egress and after the eclipse. Two‐dimensional line‐profile periodograms show several periods, the strongest with ≈110 d evident in optically thin lines as well as in the Balmer lines. Center‐of‐intensity weighted radial velocities of individual spectral lines also show the 110‐d period but, again, additional shorter and longer periods are evident and are different in the Balmer lines. The two main spectroscopic Hα periods, ≈ 116 d from the line core and ≈ 150 d from the center‐of‐intensity radial velocities, appear at 102 d and 139 d in the photometry. The Hβ and Johnson V I photometry on the other hand shows two well‐defined and phase‐coherent periods of 77 d and 132 d. We conclude that Hα is contaminated by changes in the circumstellar environment while the Hβ and V I photometry stems predominantly from the non radial pulsations of the F0 supergiant. We isolate the disk‐rotation profile from 61 absorption lines and found that low disk eccentricity generally relates to low disk rotational velocity (but not always) while high disk eccentricity always relates to high velocity. There is also the general trend that the disk‐absorption in spectral lines with higher excitation potential comes from disk regions with higher eccentricity and thus also with higher rotational velocity. The dependency on transition probability is more complex and shows a bi‐modal trend. The outskirts of the disk is distributed asymmetrically around the disk and appears to have been built up mostly in a tail along the orbit behind the secondary. Our data show that this tail continues to eclipse the F0 Iab primary star even two years after the end of the photometric eclipse. High‐resolution spectra were also taken of the other, bona‐fide, visual‐binary components of ε Aur (ADS 3605BCDE). Only the C‐component, a K3‐4‐giant, appears at the same distance than ε Aur but its radial velocity is in disagreement with a bound orbit. The other components are a nearby (≈ 7 pc) cool DA white dwarf, a G8 dwarf, and a B9 supergiant, and not related to ε Aur. The cool white dwarf shows strong DIB lines that suggest the existence of a debris disk around this star. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
192.
利用低轨卫星,对受干扰区域的卫星导航接收机进行频率传递,是提升其性能的一种有效手段.而电离层延时误差是影响传递效果的重要因素.对基于低轨卫星的频率传递应用背景进行了介绍,分析了其基本原理,并着重分析了电离层延时的存在对频率传递的影响,提出利用站间差历元差的方法对电离层延时进行修正.最后,通过仿真对理论分析进行了验证.结果表明,通过站间差历元差的手段,对当前电离层变化值进行求解与预测,可以将电离层延时误差的变化控制在一定范围,满足频率传递的要求.  相似文献   
193.
The High Dispersion Spectrograph (HDS) is the échelle spectrograph for an open‐use instrument of the Subaru Telescope. The current status of the instrument is reviewed. The new image slicers that significantly improve the efficiency of observations with very high resolving power have been installed in the past three years. Brief overview of recent science results is given on studies of early generations of stars and extra‐solar planets. An upgrade plan and future prospects of this instrument are discussed. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
194.
FIES is a cross‐dispersed high‐resolution echelle spectrograph at the 2.56 m Nordic Optical Telescope (NOT), and was optimised for throughput and stability in 2006. The major 2006 upgrade involved the relocation of FIES to a stable environment and development of a fiber bundle that offers 3 different resolution modes, and made FIES an attractive tool for the user community of the NOT. Radial‐velocity stability is achieved through double‐chamber active temperature control. A dedicated data reduction tool, FIEStool, was developed. As a result of these upgrades, FIES is now one of the work‐horse instruments at the NOT. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
195.
Modern optical spectrographs and optical interferometers push the limits in the spectral and spatial regime, providing important new tools for the exploration of the Universe. In this contribution I outline the complementary nature of spectroscopic and interferometric observations and discuss different strategies for combining such data. Most remarkable, the latest generation of “spectro‐interferometric” instruments combine the milliarcsecond angular resolution achievable with interferometry with spectral capabilities, enabling direct constraints on the distribution, density, kinematics, and ionization structure of the gas component in protoplanetary disks. I will present some selected studies from the field of star‐ and planet formation and hot star research in order to illustrate these fundamentally new observational opportunities. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
196.
Recent theoretical developments in astronomical aperture synthesis have revealed the existence of integer‐ambiguity prob‐lems. Those problems, which appear in the self‐calibration procedures of radio imaging, have been shown to be similar to the nearest‐lattice point (NLP) problems encountered in high‐precision geodetic positioning and in global navigation satellite systems. In this paper we analyse the theoretical aspects of the matter and propose new methods for solving those NLP problems. The related optimization aspects concern both the preconditioning stage, and the discrete‐search stage in which the integer ambiguities are finally fixed. Our algorithms, which are described in an explicit manner, can easily be implemented. They lead to substantial gains in the processing time of both stages. Their efficiency was shown via intensive numerical tests. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
197.
With the fast increase in the resolution of astronomical images, the question of how to process and transfer such large images has become a key issue in astronomy. We propose a new real-time compression and fast reconstruction algorithm for astronomical images based on compressive sensing techniques. We first reconstruct the original signal with fewer measurements, according to its compressibility. Then,based on the characteristics of astronomical images, we apply Daubechies orthogonal wavelets to obtain a sparse representation. A matrix representing a random Fourier ensemble is used to obtain a sparse representation in a lower dimensional space. For reconstructing the image, we propose a novel minimum total variation with block adaptive sensing to balance the accuracy and computation time. Our experimental results show that the proposed algorithm can efficiently reconstruct colorful astronomical images with high resolution and improve the applicability of compressed sensing.  相似文献   
198.
From a historical point of view, it was only through the advent of the CCD as a linear, high dynamic range panoramic detector that it became possible to overcome the source confusion problem for stellar photometry, e.g., in star clusters or nearby galaxies. The ability of accurately sampling the point-spread-function (PSF) in two dimensions and to use it as a template for fitting severely overlapping stellar images is of fundamental importance for crowded-field photometry, and has thus become the foundation for the determination of accurate color-magnitude diagrams of globular clusters and the study of resolved stellar populations in nearby galaxies. Analogous to CCDs, the introduction of integral field spectrographs has opened a new avenue for crowded-field 3D spectroscopy, which benefits in the same way from PSF-fitting techniques as CCD photometry does. This paper presents first experience with sampling the PSF in 3D spectroscopy, reviews the effects of atmospheric refraction, discusses background subtraction problems, and presents several science applications as obtained from observations with the PMAS instrument at Calar Alto Observatory.  相似文献   
199.
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号