首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4754篇
  免费   2001篇
  国内免费   253篇
测绘学   33篇
大气科学   6篇
地球物理   3664篇
地质学   2300篇
海洋学   299篇
天文学   341篇
综合类   12篇
自然地理   353篇
  2023年   3篇
  2022年   4篇
  2021年   66篇
  2020年   81篇
  2019年   264篇
  2018年   468篇
  2017年   479篇
  2016年   522篇
  2015年   460篇
  2014年   468篇
  2013年   773篇
  2012年   460篇
  2011年   422篇
  2010年   349篇
  2009年   262篇
  2008年   331篇
  2007年   228篇
  2006年   227篇
  2005年   235篇
  2004年   188篇
  2003年   185篇
  2002年   155篇
  2001年   141篇
  2000年   149篇
  1999年   41篇
  1998年   12篇
  1997年   12篇
  1996年   2篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   8篇
  1990年   1篇
排序方式: 共有7008条查询结果,搜索用时 217 毫秒
361.

Basalt at Sassafras was erupted in the Middle Eocene. The K‐Ar ages average 45.3 ± 4.9 Ma on whole rock and 48.4 ± 1.9 Ma on plagioclase. The basalt is not limited to a plateau capping, but extends 150 m down into adjacent valleys. Comparison with nearby Eocene basalts shows that there was in excess of 250 m of local relief in the central Shoalhaven valley by the Early Tertiary. The basalts were extruded at high elevation, and denudation of the coastal margin of the upland was already well advanced. Post‐basaltic denudation has been very slow, and the Early Tertiary landscape is well preserved.  相似文献   
362.
There are several methods for determining the spatial distribution and magnitude of groundwater inputs to streams. We compared the results of conventional methods [dye dilution gauging, acoustic Doppler velocimeter (ADV) differential gauging, and geochemical end‐member mixing] to distributed temperature sensing (DTS) using a fibre‐optic cable installed along 900 m of Ninemile Creek in Syracuse, New York, USA, during low‐flow conditions (discharge of 1·4 m3 s?1). With the exception of differential gauging, all methods identified a focused, contaminated groundwater inflow and produced similar groundwater discharge estimates for that point, with a mean of 66·8 l s?1 between all methods although the precision of these estimates varied. ADV discharge measurement accuracy was reduced by non‐ideal conditions and failed to identify, much less quantify, the modest groundwater input, which was only 5% of total stream flow. These results indicate ambient tracers, such as heat and geochemical mixing, can yield spatially and quantitatively refined estimates of relatively modest groundwater inflow even in large rivers. DTS heat tracing, in particular, provided the finest spatial characterization of groundwater inflow, and may be more universally applicable than geochemical methods, for which a distinct and consistent groundwater end member may be more difficult to identify. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
363.
The understanding of nutrient uptake in streams is impeded by a limited understanding of how geomorphic setting and flow regime interact with biogeochemical processing. This study investigated these interactions as they relate to transient storage and nitrate uptake in small agricultural and urban streams. Sites were selected across a gradient of channel conditions and management modifications and included three 180‐m long geomorphically distinct reaches on each of two streams in north‐central Colorado. The agricultural stream has been subject to historically variable cattle‐grazing practices, and the urban stream exhibits various levels of stabilisation and planform alteration. Reach‐scale geomorphic complexity was characterised using highly detailed surveys of channel morphology, substrate, hydraulics and habitat units. Breakthrough‐curve modelling of conservative bromide (Br?) and nonconservative nitrate (NO3?) tracer injections characterised transient storage and nitrate uptake along each reach. Longitudinal roughness and flow depth were positively associated with transient storage, which was related to nitrate uptake, thus underscoring the importance of geomorphic influences on stream biogeochemical processes. In addition, changes in geomorphic characteristics due to temporal discharge variation led to complex responses in nitrate uptake. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
364.
The HySuf‐FEM code (Hydrodynamic of Subsurface Flow by Finite Element Method) is proposed in this article in order to estimate the spatial variability of the transmissivity values of the Berrechid aquifer (Morocco). The calibration of the model is based on the hydraulic head, hydraulic conductivity and recharge. Three numerical tests are used to validate the model and verify its convergence. The first test case consists in using the steady analytical solution of the Poisson equation. In the second, the model has been compared with the hydrogeological system which is characterized by an unconfined monolayer (isotropic layer) and computed by using PMWIN‐MODFLOW software. The third test case is based on the comparison between the results of HySuf‐FEM and the multiple cell balance method in the aquifer system with natural boundaries case. Good agreement between the Hydrodynamic of Subsurface Flow, the numerical tests and the spatial distribution of the thickening of the hydrogeological system is deduced from the analysis and the interpretations of hydrogeological wells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
365.
A. Montenegro  R. Ragab 《水文研究》2010,24(19):2705-2723
Brazilian semi‐arid regions are characterized by water scarcity, vulnerability to desertification, and climate variability. The investigation of hydrological processes in this region is of major interest not only for water planning strategies but also to address the possible impact of future climate and land‐use changes on water resources. A hydrological distributed catchment‐scale model (DiCaSM) has been applied to simulate hydrological processes in a small representative catchment of the Brazilian northeast semi‐arid region, and also to investigate the impact of climate and land‐use changes, as well as changes associated with biofuel/energy crops production. The catchment is part of the Brazilian network for semi‐arid hydrology, established by the Brazilian Federal Government. Estimating and modelling streamflow (STF) and recharge in semi‐arid areas is a challenging task, mainly because of limitation in in situ measurements, and also due to the local nature of some processes. Direct recharge measurements are very difficult in semi‐arid catchments and contain a high level of uncertainty. The latter is usually addressed by short‐ and long‐time‐scale calibration and validation at catchment scale, as well as by examining the model sensitivity to the physical parameters responsible for the recharge. The DiCaSM model was run from 2000 to 2008, and streamflow was successfully simulated, with a Nash–Sutcliffe (NS) efficiency coefficient of 0·73, and R2 of 0·79. On the basis of a range of climate change scenarios for the region, the DiCaSM model forecasted a reduction by 35%, 68%, and 77%, in groundwater recharge (GWR), and by 34%, 65%, and 72%, in streamflow, for the time spans 2010–2039, 2040–2069, and 2070–2099, respectively, could take place for a dry future climate scenario. These reductions would produce severe impact on water availability in the region. Introducing castor beans to the catchment would increase the GWR and streamflow, mainly if the caatinga areas would be converted into castor beans production. Changing an area of 1000 ha from caatinga to castor beans would increase the GWR by 46% and streamflow by 3%. If the same area of pasture is converted into castor beans, there would be an increase in GWR and streamflow by 24% and 5%, respectively. Such results are expected to contribute towards environmental policies for north‐east Brazil (NEB), and to biofuel production perspectives in the region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
366.
Non‐associated flow rule is essential when the popular Mohr–Coulomb model is used to model nonlinear behavior of soil. The global tangent stiffness matrix in nonlinear finite element analysis becomes non‐symmetric when this non‐associated flow rule is applied. Efficient solution of this large‐scale non‐symmetric linear system is of practical importance. The standard Krylov solver for a non‐symmetric solver is Bi‐CGSTAB. The Induced Dimension Reduction [IDR(s)] solver was proposed in the scientific computing literature relatively recently. Numerical studies of a drained strip footing problem on homogenous soil layer show that IDR(s = 6) is more efficient than Bi‐CGSTAB when the preconditioner is the incomplete factorization with zero fill‐in of global stiffness matrix Kep (ILU(0)‐Kep). Iteration time is reduced by 40% by using IDR(s = 6) with ILU(0)‐Kep. To further reduce computational cost, the global stiffness matrix Kep is divided into two parts. The first part is the linear elastic stiffness matrix Ke, which is formed only once at the beginning of solution step. The second part is a low‐rank matrix Δ, which is re‐formed at each Newton–Raphson iteration. Numerical studies show that IDR(s = 6) with this ILU(0)‐Ke preconditioner is more time effective than IDR(s = 6) with ILU(0)‐Kep when the percentage of yielded Gauss points in the mesh is less than 15%. The total computation time is reduced by 60% when all the recommended optimizing methods are used. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
367.
Progressive Early Silurian low‐pressure greenschist to granulite facies regional metamorphism of Ordovician flysch at Cooma, southeastern Australia, had different effects on detrital zircon and monazite and their U–Pb isotopic systems. Monazite began to dissolve at lower amphibolite facies, virtually disappearing by upper amphibolite facies, above which it began to regrow, becoming most coarsely grained in migmatite leucosome and the anatectic Cooma Granodiorite. Detrital monazite U–Pb ages survived through mid‐amphibolite facies, but not to higher grade. Monazite in the migmatite and granodiorite records only metamorphism and granite genesis at 432.8 ± 3.5 Ma. Detrital zircon was unaffected by metamorphism until the inception of partial melting, when platelets of new zircon precipitated in preferred orientations on the surface of the grains. These amalgamated to wholly enclose the grains in new growth, characterised by the development of {211} crystal faces, in the migmatite and granodiorite. New growth, although maximum in the leucosome, was best dated in the granodiorite at 435.2 ± 6.3 Ma. The combined best estimate for the age of metamorphism and granite genesis is 433.4 ± 3.1 Ma. Detrital zircon U–Pb ages were preserved unmodified throughout metamorphism and magma genesis and indicate derivation of the Cooma Granodiorite from Lower Palaeozoic source rocks with the same protolith as the Ordovician sediments, not Precambrian basement. Cooling of the metamorphic complex was relatively slow (average ~12°C/106y from ~730 to ~170°C), more consistent with the unroofing of a regional thermal high than cooling of an igneous intrusion. The ages of detrital zircon and monazite from the Ordovician flysch (dominantly composite populations 600–500 Ma and 1.2–0.9 Ga old) indicate its derivation from a source remote from the Australian craton.  相似文献   
368.
Understanding the impacts of land‐use changes on hydrology at the watershed scale can facilitate development of sustainable water resource strategies. This paper investigates the hydrological effects of land‐use change in Zanjanrood basin, Iran. The water balance was simulated using the Soil and Water Assessment Tool (AVSWAT2000). Model calibration and uncertainty analysis were performed with sequential uncertainty fitting (SUFI‐2). Simulation results from January 1998 to December 2002 were used for parameter calibration, and then the model was validated for the period of January 2003 to December 2004. The predicted monthly streamflow matched the observed values: during calibration the correlation coefficient was 0·86 and the Nash–Sutcliffe coefficient 0·79, compared with 0·80 and 0·79, respectively, during validation. The model was used to simulate the main components of the hydrological cycle, in order to study the effects of land‐use changes in 1967, 1994 and 2007. The study reveals that during 1967 a 34·5% decrease of grassland with concurrent increases of shrubland (13·9%), rain‐fed agriculture (12·1%), bare ground (5·5%) irrigated agriculture (2·2%), and urban area (0·7%) led to a 33% increase in the amount of surface runoff and a 22% decrease in the groundwater recharge. Furthermore, the area of sub‐basins that was influenced by high runoff (14–28 mm) increased. The results indicate that the hydrological response to overgrazing and the replacing of rangelands (grassland and shrubland) with rain‐fed agriculture and bare ground (badlands) is nonlinear and exhibits a threshold effect. The runoff rises dramatically when more than 60% of the rangeland is removed. For groundwater this threshold lies at an 80% decrease in rangeland. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
369.
The lower coastal plain of the Southeast USA is undergoing rapid urbanisation as a result of population growth. Land use change has been shown to affect watershed hydrology by altering stream flow and, ultimately, impairing water quality and ecologic health. However, because few long‐term studies have focused on groundwater–surface water interactions in lowland watersheds, it is difficult to establish what the effect of development might be in the coastal plain region. The objective of this study was to use an innovative improvement to end‐member mixing analysis (EMMA) to identify time sequences of hydrologic processes affecting storm flow. Hydrologic and major ion chemical data from groundwater, soil water, precipitation and stream sites were collected over a 2‐year period at a watershed located in USDA Forest Service's Santee Experimental Forest near Charleston, South Carolina, USA. Stream flow was ephemeral and highly dependent on evapotranspiration rates and rainfall amount and intensity. Hydrograph separation for a series of storm events using EMMA allowed us to identify precipitation, riparian groundwater and streambed groundwater as main sources to stream flow, although source contribution varied as a function of antecedent soil moisture condition. Precipitation, as runoff, dominated stream flow during all storm events while riparian and streambed groundwater contributions varied and were mainly dependent on antecedent soil moisture condition. Sensitivity analyses examined the influence of 10% and 50% increases in analyte concentration on EMMA calculations and found that contribution estimates were very sensitive to changes in chemistry. This study has implications on the type of methodology used in traditional forms of EMMA research, particularly in the recognition and use of median end‐member water chemistry in hydrograph separation techniques. Potential effects of urban development on important hydrologic processes (groundwater recharge, interflow, runoff, etc.) that influence stream flow in these lowland watersheds were qualitatively examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
370.
This paper describes the hydrological changes caused by inter‐basin water transfer and the reservoir development on the hydrological regimes of two rivers. The Sabljaki Reservoir in the Zagorska Mre?nica River and the Bukovik Reservoir in the upper Dobra River began operation in 1959. Both are part of the hydroelectric power plant (HEPP) Gojak, whose installed capacity is 50 m3/s. Their water volumes at the spillway altitudes of 320·10 and 320·15 m a. s. l. are 3·3 × 106 and 0·24 × 106 m3 respectively. Both the Dobra and Mre?nica Rivers are losing, sinking and underground karst rivers. A 9376‐m‐long tunnel provides water from the Sabljaki Reservoir to the HEPP Gojak, which was constructed in the Lower Dobra River. The Sabljaki Reservoir is located in the Pla?ki karst polje, while the Bukovik Reservoir is located in the neighbouring Ogulin karst polje. The consequences of the inter‐basin water transfer are strong and have caused abrupt changes in the hydrological regimes of the downstream sections of both rivers. At the same time, the construction and development of both the reservoirs have also caused hydrological changes to the upstream section of the Upper Dobra River. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号