首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   94篇
  国内免费   89篇
测绘学   104篇
大气科学   53篇
地球物理   63篇
地质学   338篇
海洋学   155篇
天文学   2篇
综合类   16篇
自然地理   22篇
  2024年   1篇
  2023年   3篇
  2022年   17篇
  2021年   10篇
  2020年   13篇
  2019年   26篇
  2018年   15篇
  2017年   21篇
  2016年   28篇
  2015年   29篇
  2014年   39篇
  2013年   55篇
  2012年   42篇
  2011年   38篇
  2010年   28篇
  2009年   31篇
  2008年   49篇
  2007年   27篇
  2006年   48篇
  2005年   31篇
  2004年   33篇
  2003年   31篇
  2002年   34篇
  2001年   17篇
  2000年   19篇
  1999年   14篇
  1998年   13篇
  1997年   9篇
  1996年   7篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
排序方式: 共有753条查询结果,搜索用时 15 毫秒
101.
An extended version of the classical Generalized Backward Euler (GBE) algorithm is proposed for the numerical integration of a three‐invariant isotropic‐hardening elastoplastic model for cemented soils or weak rocks undergoing mechanical and non‐mechanical degradation processes. The restriction to isotropy allows to formulate the return mapping algorithm in the space of principal elastic strains. In this way, an efficient and robust integration scheme is developed which can be applied to relatively complex yield surface and plastic potential functions. Moreover, the proposed algorithm can be linearized in closed form, thus allowing for quadratic convergence in the global Newton iteration. A series of numerical experiments are performed to illustrate the accuracy and convergence properties of the algorithm. Selected results from a finite element analysis of a circular footing on a soft rock layer undergoing chemical weathering are then presented to illustrate the algorithm performance at the boundary value problem level. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
102.
对应用较为广泛的Shape数据模型进行分析和研究,并且针对一幅全要素海图由于数据量大的原因导致读取和图形显示速度慢的问题,在实践中采用快速读取内存的方法,实现了数字海图的快速读取及显示,并且同以往循环读取方法进行了比较.  相似文献   
103.
本文分析了2012年唐山4.8级地震前,震中附近出现的短期原地重现线状集中分布地磁日变化感应电流异常的时空变化特征,及其与地震、中-下地壳和上地幔高导层的关系,进一步证实了短期原地重现线状集中分布感应电流的走向与中-下地壳和上地幔高导层顶面界埋深走向一致,认为其机理可能是深部热流体的上涌导致壳幔高阻体出现带有上拱性质的拆离滑动,深部上涌的热流体和高导层内热流体侵入高导层内电阻相对较高的地区,高导层出现短时间高导电流通道,当地磁日变化感应电流扫描经过高导电流通道时,感应电流会呈线状集中分布于此,并基于趋肤效应分布于其顶面附近。由于重现异常是发生在震源下方中-下地壳和上地幔高导层的地震异常,且该异常不同于震源附近及其震源至地表的地震异常,因此对推进地震孕育与发生机理研究可能有一定作用。此外研究还发现,地震虽然主要位于重叠段的端部,但更有可能位于中-下地壳重叠段的端部,这一发现对日常震情跟踪中应用该异常确定未来地震位置有一定帮助。  相似文献   
104.
极地海区等距离正圆柱投影平面上等角航线的展绘方法   总被引:1,自引:0,他引:1  
墨卡托投影由于其纬度渐长的特性导致在极地海区投影存在严重的长度变形,无法在南北纬80°以外高纬度海区航海图中较好地应用。将长度变形程度明显低于墨卡托投影的等距离正圆柱投影作为极地海区的海图投影,研究了该投影平面中等角航线在极地海区的展绘方法。建立了等距离正圆柱投影平面上等角航线方程并对其曲率进行了分析,推导了绘制一般曲线形态的"以直代曲"公式;最后提出了一种可满足给定精度要求的等角航线展绘算法。实验结果表明:该算法简单易行,可在海图编绘规范规定的误差范围内,实现等角航线的精确展绘。  相似文献   
105.
The paper presents an optimization routine especially developed for the identification of model parameters in soil plasticity on the basis of different soil tests. Main focus is put on the mathematical aspects and the experience from application of this optimization routine. Mathematically, for the optimization, an objective function and a search strategy are needed. Some alternative expressions for the objective function are formulated. They capture the overall soil behaviour and can be used in a simultaneous optimization against several laboratory tests. Two different search strategies, Rosenbrock's method and the Simplex method, both belonging to the category of direct search methods, are utilized in the routine. Direct search methods have generally proved to be reliable and their relative simplicity make them quite easy to program into workable codes. The Rosenbrock and simplex methods are modified to make the search strategies as efficient and user‐friendly as possible for the type of optimization problem addressed here. Since these search strategies are of a heuristic nature, which makes it difficult (or even impossible) to analyse their performance in a theoretical way, representative optimization examples against both simulated experimental results as well as performed triaxial tests are presented to show the efficiency of the optimization routine. From these examples, it has been concluded that the optimization routine is able to locate a minimum with a good accuracy, fast enough to be a very useful tool for identification of model parameters in soil plasticity. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
106.
High porosity and low permeability limestone has presented pore collapse. As fluid is withdrawn from these reservoirs, the effective stresses acting on the rock increase. If the strength of the rock is overcome, pore collapse may occur, leading to irreversible compaction of porous media with permeability and porosity reduction. It impacts on fluid withdrawal. Most of reservoirs have been discovered in weak formations, which are susceptible to this phenomenon. This work presents a study on the mechanical behaviour of a porous limestone from a reservoir located in Campos Basin, offshore Brazil. An experimental program was undergone in order to define its elastic plastic behaviour. The tests reproduced the loading path conditions expected in a reservoir under production. Parameters of the cap model were fitted to these tests and numerical simulations were run. The numerical simulations presented a good agreement with the experimental tests. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
107.
A delayed plastic model, based on the theory of plasticity, is proposed to represent the time‐dependent behaviour of materials. It is assumed in this model that the stress can lie outside the yield surface and the conjugate stress called static stress is defined on the yield surface. The stress–strain relation is calculated based on the plastic theory embedding the static stress. Thus, the stress–strain relation of the model practically corresponds to that of the inviscid elastoplastic model under fairly low rate deformation. The delayed plastic model is coupled with the Cam‐clay model for normally consolidated clays. The performance of the model is then examined by comparing the model predictions with reported time‐dependent behaviour of clays under undrained triaxial conditions. It is shown that the model is capable of predicting the effect of strain rate during undrained shear and the undrained creep behaviour including creep rupture. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
108.
Stress–dilatancy relations have played a crucial role in the understanding of the mechanical behaviour of soils and in the development of realistic constitutive models for their response. Recent investigations on the mechanical behaviour of materials with crushable grains have called into question the validity of classical relations such as those used in critical state soil mechanics. In this paper, a method to construct thermodynamically consistent (isotropic, three‐invariant) elasto‐plastic models based on a given stress–dilatancy relation is discussed. Extensions to cover the case of granular materials with crushable grains are also presented, based on the interpretation of some classical model parameters (e.g. the stress ratio at critical state) as internal variables that evolve according to suitable hardening laws. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
109.
The yield vertex non‐coaxial theory is implemented into a critical state soil model, CASM (Int. J. Numer. Anal. Meth. Geomech. 1998; 22 :621–653) to investigate the non‐coaxial influences on the stress–strain simulations of real soil behaviour in the presence of principal stress rotations. The CASM is a unified clay and sand model, developed based on the soil critical state concept and the state parameter concept. Without loss of simplicity, it is capable of simulating the behaviour of sands and clays within a wide range of densities. The non‐coaxial CASM is employed to simulate the simple shear responses of Erksak sand and Weald clay under different densities and initial stress states. Dependence of the soil behaviour on the Lode angle and different plastic flow rules in the deviatoric plane are also considered in the study of non‐coaxial influences. All the predictions indicate that the use of the non‐coaxial model makes the orientations of the principal stress and the principal strain rate different during the early stage of shearing, and they approach the same ultimate values with an increase in loading. These ultimate orientations are dependent on the density of soils, and independent of their initial stress states. The use of the non‐coaxial model also softens the shear stress evolutions, compared with the coaxial model. It is also found that the ultimate shear strengths by using the coaxial and non‐coaxial models are dependent on the plastic flow rules in the deviatoric plane. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
110.
The mathematical structure and numerical analysis of classical small deformation elasto–plasticity is generally well established. However, development of large deformation elastic–plastic numerical formulation for dilatant, pressure sensitive material models is still a research area. In this paper we present development of the finite element formulation and implementation for large deformation, elastic–plastic analysis of geomaterials. Our developments are based on the multiplicative decomposition of the deformation gradient into elastic and plastic parts. A consistent linearization of the right deformation tensor together with the Newton method at the constitutive and global levels leads toward an efficient and robust numerical algorithm. The presented numerical formulation is capable of accurately modelling dilatant, pressure sensitive isotropic and anisotropic geomaterials subjected to large deformations. In particular, the formulation is capable of simulating the behaviour of geomaterials in which eigentriads of stress and strain do not coincide during the loading process. The algorithm is tested in conjunction with the novel hyperelasto–plastic model termed the B material model, which is a single surface (single yield surface, affine single ultimate surface and affine single potential surface) model for dilatant, pressure sensitive, hardening and softening geomaterials. It is specifically developed to model large deformation hyperelasto–plastic problems in geomechanics. We present an application of this formulation to numerical analysis of low confinement tests on cohesionless granular soil specimens recently performed in a SPACEHAB module aboard the Space Shuttle during the STS‐89 mission. We compare numerical modelling with test results and show the significance of added confinement by the thin hyperelastic latex membrane undergoing large stretching. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号