首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1116篇
  免费   82篇
  国内免费   291篇
测绘学   9篇
大气科学   10篇
地球物理   369篇
地质学   42篇
海洋学   907篇
综合类   110篇
自然地理   42篇
  2024年   16篇
  2023年   29篇
  2022年   43篇
  2021年   42篇
  2020年   45篇
  2019年   48篇
  2018年   59篇
  2017年   40篇
  2016年   55篇
  2015年   55篇
  2014年   73篇
  2013年   72篇
  2012年   64篇
  2011年   88篇
  2010年   68篇
  2009年   64篇
  2008年   78篇
  2007年   62篇
  2006年   67篇
  2005年   49篇
  2004年   43篇
  2003年   31篇
  2002年   36篇
  2001年   31篇
  2000年   28篇
  1999年   20篇
  1998年   37篇
  1997年   21篇
  1996年   25篇
  1995年   11篇
  1994年   11篇
  1993年   14篇
  1992年   11篇
  1991年   6篇
  1990年   8篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   7篇
  1984年   8篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
排序方式: 共有1489条查询结果,搜索用时 62 毫秒
91.
A case study was carried out in 2000 in the shallow coastal area of the Northern Adriatic Sea (Gulf of Trieste) where untreated domestic sewage and industrial wastes are discharged at rate of 5500 m3·day?1. The sewage plume above the outfall was followed using faecal coliforms (FC) and overturning length scale (lT). The latter was rejected as a marker as the discharge conditions prohibit following the turbulence of sewage water. Intermittent sewage discharge is reflected in the minimal effect of eutrophication. Increase of phytoplankton biomass is thus only minor compared with the unpolluted area regardless of elevated concentrations of sewage‐derived nutrients (confirmed by correlation coefficients between FC and NH4+, TP, PO43?: 0.78, 0.71 and 0.67, respectively). Deteriorated trophic status, determined by the TRIX index, was observed only in the surface layer (average TRIX: 5.67). High FC content well above the regulation limit (up to 2.6 × 105 FC·100 ml?1) represents, therefore, the major negative impact of the improperly treated waste for the risk to human health.  相似文献   
92.
93.
The photosynthetic properties of phytoplankton populations as related to physical–chemical variations on small temporal and spatial scales and to phytoplankton size structure and pigment spectra were investigated in the Northern Adriatic Sea off the Po River delta in late winter 1997. Large diatoms (fucoxanthin) dominated the phytoplankton in the coastal area whereas small phytoflagellates (mainly 19′-hexanoyloxyfucoxanthin, chlorophyll b, 19′-butanoyloxyfucoxanthin) occurred outside the front. The front was defined by the steep gradient in density in the surface layer separating low-salinity coastal waters from the offshore waters.Physical features of the area strongly influenced phytoplankton biomass distributions, composition and size structure. After high volumes of Po River discharge several gyres and meanders occurred in the area off the river delta in February. Decreasing river discharge and the subsequent disappearance of the gyres and the spreading dilution of the river plume was observed in March. The dynamic circulation of February resulted in high photosynthetic capacity of the abundant phytoplankton population (>3.40 mg m−3). In March, the slow circulation and an upper low-salinity water layer, segregated from the deeper layers, resulted in lack of renewal of this water mass. The huge phytoplankton biomass, up to 15.77 mg chl a m−3, became nutrient depleted and showed low photosynthetic capacity. In February, an exceptionally high PmaxB, 20.11 mg C (mg chl a)−1 h−1 was recorded in the Po River plume area and average PmaxB was three-fold in February as compared to the March recordings, 10.50 mg C (mg chl a)−1 h−1 and 3.22 mg C (mg chl a)−1 h−1, respectively.The extreme variability and values of phytoplankton biomass in the innermost plume area was not always reflected in primary production. Modeling of circulation patterns and water mass resilience in the area will help to predict phytoplankton response and biomass distributions. In the frontal area, despite a considerable variability in environmental conditions, our findings have shown that the phytoplankton assemblages will compensate for nutrient depression and hydrographic constraints, by means of size and taxonomic composition and, as a result, the variability in the photosynthetic capacity was much less pronounced than that observed for other parameters.  相似文献   
94.
The inter-annual variability in phytoplankton summer blooms in the upper reaches of the Schelde estuary was investigated between 1996 and 2005 by monthly sampling at 10 stations. The large inter-annual variations of the chlorophyll a concentration in the freshwater tidal reaches were independent from variations in chlorophyll a in the tributary river Schelde. Summer mean chlorophyll a concentrations were significantly negatively correlated with flushing rate (Spearman correlation: r = −0.67, p = 0.05, n = 9) but not with temperature, irradiance and suspended particulate matter or dissolved silica (DSi) concentrations. During dry summers, low flushing rates permitted the development of dense phytoplankton populations in the upper part of the estuary, while during wet summers high flushing rates prevented the development of dense phytoplankton blooms. Flushing rate was also found to be important for the phytoplankton community composition. At low flushing rates, the community was dominated by diatoms that developed within the upper estuary. At high flushing rates, chlorophytes imported from the tributary river Schelde became more important in the phytoplankton community. The position of the chlorophyll a maximum shifted from the head of the estuary when flushing rates were low, to more downstream when flushing rates were high. Although DSi concentrations tended to be lower during years of high phytoplankton (mainly diatom) biomass, the relation with flushing rate was not significant.  相似文献   
95.
The fishery yield of Manila clams, Ruditapes philippinarum, increased considerably in the 1970s but has decreased rapidly since the middle 1980s on extensive intertidal sand flats in Ariake Sound (Kyushu, Japan). A survey conducted in 2004 on a 3.4-km2 sand flat located in the central part of the Sound (Shirakawa sand flat) revealed four dominant species: two thalassinidean shrimps (Upogebia major and Nihonotrypaea japonica), which are deep-reaching burrow dwellers with strong bioturbation activities, and two bivalves (Mactra veneriformis and R. philippinarum). All four species belong to a phytoplankton (diatom)-feeding guild. In the late 1970s, the Manila clam population prevailed in high densities over the entire sand flat, whereas its distribution was restricted to the lowest quarter of the shore in 2004. In contrast, the population sizes and zones of occurrence of the other phytoplankton feeders have expanded in the absence of R. philippinarum, perhaps an indication of competitive release. After establishment, effects of the thalassinidean shrimps on sediment stability appear to have further reduced clam abundances. Across the sand flat in 2004, wet weight population biomass estimates for N. japonica, U. major, M. veneriformis, and R. philippinarum (whole body for shrimps and soft tissue for bivalves) were 304, 111, 378, and 234 tonnes, respectively. Based on Manila clam fishery yield records from Shirakawa, the carrying capacity of the Shirakawa sand flat in the late 1970s was estimated to be two times greater than the sum value for the whole phytoplankton-feeding guild in 2004. It is hypothesized that (1) the amount of phytoplankton determines the carrying capacity for the benthic community on the Shirakawa sand flat, with both phytoplankton and benthic biomass at maxima in the late 1970s, and (2) the subsequent increases in competition for space have caused further declines in the Manila clam population biomass to approximately one-eighth of its past value.  相似文献   
96.
This paper covers spatial and temporal variation in phytoplankton communities and physico-chemical water properties in the cage culture area of Sepanggar Bay, Sabah, Malaysia based on field measurement conducted during July 2005 to January 2006 to study the spatial and temporal variation in phytoplankton communities and physico-chemical water properties of the bay. Phytoplankton samples and water parameters data were collected from five different stations located inside the bay during Southwest, Interseasonal and Northeast monsoons. Forty phytoplankton genera, representatives of 23 families, were found in the study area with a mean abundance of 1.55 ± 1.19 × 106 cells L−1. Most of these genera belong to diatoms (82.17%), Dinoflagellates (17.55%) and cyanobacteria (0.29%). Three genera were found to be dominant (>10%) in phytoplankton abundance and these were Coscinodiscus spp. (36.38%), Chaetoceros spp (17.65%) and Bacteriastrum spp. (10.98%). The most dominant genus was Coscinodiscus spp. which showed high abundance during all monsoons and stations (except Station 3). Among the seven environmental parameters tested in this study, water temperature, pH and suspended sediment concentration were found to be significantly different between monsoons. On the other hand, no significant differences were found between stations for the studied physico-chemical parameters. A clear differences in phytoplankton densities were observed between monsoons and stations with higher mean abundances during interseasonal monsoon (2.40 ± 1.37 × 106 cells L−1) and at station five (2.05 ± 0.74 × 106 cells L−1), respectively. Conversely, the diversity indices, both Shannon–Wiener (H)(H) and Pielou (J)(J), showed no significant difference throughout stations and monsoons (except (H)(H) for monsoons). Analysis of similarity (ANOSIM) results demonstrated temporal differences in phytoplankton community structure with highly diverse phytoplankton assemblage. Through cluster analysis five groups of phytoplankton were attained (at 40% similarity level) though no marked separation of the taxonomic classes pointed towards the constant pattern of the phytoplankton assemblage in the studied area.  相似文献   
97.
98.
Our analysis of the last three decades of retrospective data of vertical distributions and size composition of chlorophyll-a (Chl-a) over the western North Pacific has revealed significant changes of three indices related to Chl-a during summer season, as follows: (1) decreasing linear trend of the proportion of Chl-a in surface layer to that of the whole water column by 0.4 and 2.3% year−1 in the subtropical area along 137°E (STA137) during 1972 to 1997 and in the Kuroshio Extension area along 175°E (KEA175) during 1990 to 2001; (2) increasing linear trend of the depth of subsurface Chl-a maximum (DCM) by 0.4 and 2.6 m year−1 in STA137 and KEA175; and (3) decreasing linear trend of larger-size Chl-a (>3 μm) by 0.1 and 2.5% year−1 in STA137 and KEA175, respectively. Water density (σ θ ) at 75 m depth had also decreased by 0.006 and 0.05 year−1 in STA137 and KEA175, respectively. The ratio of biogenic opal to biogenic CaCO3 in the sinking flux decreased by 0.015 year−1 in the subtropical region from 1997 to 2005. These findings may indicate that the subsurface chlorophyll maximum is deepening and larger phytoplankton such as diatoms has been decreasing during the past decade, associated with the decreasing density of surface water caused by warming in the western North Pacific, especially in the summer.  相似文献   
99.
根据闽东海洋环境监测中心2004年-2006年阂东沿岸生态调查的资料,分析和研究了闽东沿岸浮游植物的生态特征.共鉴定出浮游植物的种类3个门39属共134种,其中硅藻门的种类占总种数的80%,为该调查海域主要门类.主要优势种是中肋骨条藻(Skeletonema costatum)、旋链角毛藻(Chaetoceros curvisetus)、尖刺拟菱形藻(Pseudo—nitzschia pungens)和丹麦细柱藻(Leptocylindrus danicus)等.浮游植物的丰度分布,呈现由调查海域东北侧向西南侧、由近岸向远岸减少的空间特征,夏季高、春季低的季节变化特点,并且有逐年减少的年际变化趋势.本调查海域浮游植物多样性指数较高,群落较稳定.  相似文献   
100.
Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai) , three zooplankton (copepods, large zooplankton, and microzooplankton : ZS, ZL, ZP) , three nutrients ( nitrate + nitrite, ammonium, silicon : NO3 , NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号