首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1061篇
  免费   188篇
  国内免费   209篇
测绘学   92篇
大气科学   239篇
地球物理   366篇
地质学   255篇
海洋学   266篇
天文学   96篇
综合类   44篇
自然地理   100篇
  2024年   6篇
  2023年   6篇
  2022年   16篇
  2021年   19篇
  2020年   23篇
  2019年   28篇
  2018年   19篇
  2017年   38篇
  2016年   49篇
  2015年   23篇
  2014年   46篇
  2013年   76篇
  2012年   57篇
  2011年   58篇
  2010年   69篇
  2009年   85篇
  2008年   72篇
  2007年   84篇
  2006年   61篇
  2005年   57篇
  2004年   44篇
  2003年   53篇
  2002年   46篇
  2001年   33篇
  2000年   37篇
  1999年   38篇
  1998年   43篇
  1997年   37篇
  1996年   26篇
  1995年   25篇
  1994年   35篇
  1993年   35篇
  1992年   21篇
  1991年   12篇
  1990年   17篇
  1989年   27篇
  1988年   9篇
  1987年   10篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   4篇
  1973年   2篇
排序方式: 共有1458条查询结果,搜索用时 31 毫秒
121.
As is well known, a complete stochastic solution of the stochastic differential equation governing saturated groundwater flow leads to an infinite hierarchy of equations in terms of higher-order moments. Perturbation techniques are commonly used to close this hierarchy, using power-series expansions. These methods are applied by truncating the series after a finite number of terms, and products of random gradients of conductivity and head potential are neglected. Uncertainty regarding the number or terms required to yield a sufficiently accurate result is a significant drawback with the application of power series-based perturbation methods for such problems. Low-order series truncation may be incapable of representing fundamental characteristics of flow and can lead to physically unreasonable and inaccurate solutions of the stochastic flow equation. To support this argument, one-dimensional, steady-state, saturated groundwater flow is examined, for the case of a spatially distributed hydraulic conductivity field. An ordinary power-series perturbation method is used to approximate the mean head, using second-order statistics to characterize the conductivity field. Then an interactive perturbation approach is introduced, which yields improved results compared to low-order, power-series perturbation methods for situations where strong interactions exist between terms in such approximations. The interactive perturbation concept is further developed using Feynman-type diagrams and graph theory, which reduce the original stochastic flow problem to a closed set of equations for the mean and the covariance functions. Both theoretical and practical advantages of diagrammatic solutions are discussed; these include the study of bounded domains and large fluctuations.  相似文献   
122.
采用摄动法对二维弹性波动方程组的系数反问题进行渐近近似,给出了反演系数的具体计算方法。用摄动法解微分方程组的系数反问题还是首次。此外,还采用了地球物理分层模型,这种分层模型便于更精细地反映地球不同圈层的物理特征,更接近于实际情况。同时对进一步提高反演分辨率、增加反演参数、对病态方程组如何克服不适定性等问题,作了具体阐述,具有重要的理论意义与应用价值。  相似文献   
123.
The three-dimensional (3-D) resection problem is usually solved by first obtaining the distances connecting the unknown point P{X,Y,Z} to the known points Pi{Xi,Yi,Zi}i=1,2,3 through the solution of the three nonlinear Grunert equations and then using the obtained distances to determine the position {X,Y,Z} and the 3-D orientation parameters {,, }. Starting from the work of the German J. A. Grunert (1841), the Grunert equations have been solved in several substitutional steps and the desire as evidenced by several publications has been to reduce these number of steps. Similarly, the 3-D ranging step for position determination which follows the distance determination step involves the solution of three nonlinear ranging (`Bogenschnitt') equations solved in several substitution steps. It is illustrated how the algebraic technique of Groebner basis solves explicitly the nonlinear Grunert distance equations and the nonlinear 3-D ranging (`Bogenschnitt') equations in a single step once the equations have been converted into algebraic (polynomial) form. In particular, the algebraic tool of the Groebner basis provides symbolic solutions to the problem of 3-D resection. The various forward and backward substitution steps inherent in the classical closed-form solutions of the problem are avoided. Similar to the Gauss elimination technique in linear systems of equations, the Groebner basis eliminates several variables in a multivariate system of nonlinear equations in such a manner that the end product normally consists of a univariate polynomial whose roots can be determined by existing programs e.g. by using the roots command in Matlab.Acknowledgments.The first author wishes to acknowledge the support of JSPS (Japan Society of Promotion of Science) for the financial support that enabled the completion of the write-up of the paper at Kyoto University, Japan. The author is further grateful for the warm welcome and the good working atmosphere provided by his hosts Professors S. Takemoto and Y. Fukuda of the Department of Geophysics, Graduate School of Science, Kyoto University, Japan.  相似文献   
124.
Kaula’s rule of thumb has been used in producing geopotential models from space geodetic measurements, including the most recent models from satellite gravity missions CHAMP. Although Xu and Rummel (Manuscr Geod 20 8–20, 1994b) suggested an alternative regularization method by introducing a number of regularization parameters, no numerical tests have ever been conducted. We have compared four methods of regularization for the determination of geopotential from precise orbits of COSMIC satellites through simulations, which include Kaula’s rule of thumb, one parameter regularization and its iterative version, and multiple parameter regularization. The simulation results show that the four methods can indeed produce good gravitational models from the precise orbits of centimetre level. The three regularization methods perform much better than Kaula’s rule of thumb by a factor of 6.4 on average beyond spherical harmonic degree 5 and by a factor of 10.2 for the spherical harmonic degrees from 8 to 14 in terms of degree variations of root mean squared errors. The maximum componentwise improvement in the root mean squared error can be up to a factor of 60. The simplest version of regularization by multiplying a positive scalar with a unit matrix is sufficient to better determine the geopotential model. Although multiple parameter regularization is theoretically attractive and can indeed eliminate unnecessary regularization for some of the harmonic coefficients, we found that it only improved its one parameter version marginally in this COSMIC example in terms of the mean squared error.  相似文献   
125.
查明 《测绘科学与工程》2006,26(1):44-45,40
本文叙述了顾及地球引力摄动的卫星化置计算方法;利用天球坐标系与地球坐标系之间的坐标变换关系,给出了由卫星位置计算卫星星下点位置的严密计算公式。  相似文献   
126.
Hakan Sirin   《Journal of Hydrology》2006,330(3-4):564-572
Pore flow velocity is assumed to be a nondivergence-free, unsteady, and nonstationary random function of space and time for ground water contaminant transport in a heterogeneous medium. The laboratory-scale stochastic contaminant transport equation is up scaled to field scale by taking the ensemble average of the equation by using the cumulant expansion method. A new velocity correction, which is a function of mean pore flow velocity divergence, is obtained due to strict second order cumulant expansion (without omitting any term after the expansion). The field scale transport equations under the divergence-free pore flow velocity field assumption are also derived by simplifying the nondivergence-free field scale equation. The significance of the new velocity correction term is investigated on a two dimensional transport problem driven by a density dependent flow.  相似文献   
127.
The common-ray approximation eliminates problems with ray tracing through S-wave singularities and also considerably simplifies the numerical algorithm of the coupling ray theory for S waves, but may introduce errors in travel times due to the perturbation from the common reference ray. These travel-time errors can deteriorate the coupling-ray-theory solution at high frequencies. It is thus of principal importance for numerical applications to estimate the errors due to the common-ray approximation applied. The anisotropic-common-ray approximation of the coupling ray theory is more accurate than the isotropic-common-ray approximation. We derive the equations for estimating the travel-time errors due to the anisotropic-common-ray (and also isotropic-common-ray) approximation of the coupling ray theory. The errors of the common-ray approximations are calculated along the anisotropic common rays in smooth velocity models without interfaces. The derivation is based on the general equations for the second-order perturbations of travel time.  相似文献   
128.
129.
Since the last International Union of Geodesy and Geophysics General Assembly(2003),predictability studies in China have made significant progress.For dynamic forecasts,two novel approaches of conditional nonlinear optimal perturbation and nonlinear local Lyapunov exponents were proposed to cope with the predictability problems of weather and climate,which are superior to the corresponding linear theory.A possible mechanism for the"spring predictability barrier"phenomenon for the El Ni(?)o-Southern Oscillation (ENSO)was provided based on a theoretical model.To improve the forecast skill of an intermediate coupled ENSO model,a new initialization scheme was developed,and its applicability was illustrated by hindcast experiments.Using the reconstruction phase space theory and the spatio-temporal series predictive method, Chinese scientists also proposed a new approach to improve dynamical extended range(monthly)prediction and successfully applied it to the monthly-scale predictability of short-term climate variations.In statistical forecasts,it was found that the effects of sea surface temperature on precipitation in China have obvious spatial and temporal distribution features,and that summer precipitation patterns over east China are closely related to the northern atmospheric circulation.For ensemble forecasts,a new initial perturbation method was used to forecast heavy rain in Guangdong and Fujian Provinces on 8 June 1998.Additionally, the ensemble forecast approach was also used for the prediction of a tropical typhoons.A new downscaling model consisting of dynamical and statistical methods was provided to improve the prediction of the monthly mean precipitation.This new downsealing model showed a relatively higher score than the issued operational forecast.  相似文献   
130.
Geostatistically based history-matching methods make it possible to devise history-matching strategies that will honor geologic knowledge about the reservoir. However, the performance of these methods is known to be impeded by slow convergence rates resulting from the stochastic nature of the algorithm. It is the purpose of this paper to introduce a method that integrates qualitative gradient information into the probability perturbation method to improve convergence. The potential of the proposed method is demonstrated on a synthetic history-matching example. The results indicate that inclusion of qualitative gradient information improves the performance of the probability perturbation method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号