首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   122篇
  国内免费   181篇
测绘学   6篇
大气科学   551篇
地球物理   62篇
地质学   32篇
海洋学   11篇
天文学   4篇
综合类   11篇
自然地理   30篇
  2024年   1篇
  2023年   7篇
  2022年   12篇
  2021年   14篇
  2020年   14篇
  2019年   17篇
  2018年   12篇
  2017年   9篇
  2016年   9篇
  2015年   25篇
  2014年   20篇
  2013年   20篇
  2012年   13篇
  2011年   15篇
  2010年   14篇
  2009年   30篇
  2008年   12篇
  2007年   15篇
  2006年   38篇
  2005年   19篇
  2004年   35篇
  2003年   26篇
  2002年   34篇
  2001年   25篇
  2000年   16篇
  1999年   40篇
  1998年   30篇
  1997年   44篇
  1996年   25篇
  1995年   13篇
  1994年   16篇
  1993年   9篇
  1992年   11篇
  1991年   12篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   4篇
  1986年   4篇
  1985年   11篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   5篇
  1978年   2篇
排序方式: 共有707条查询结果,搜索用时 73 毫秒
11.
The stratospheric polar vortex strengthening from late winter to spring plays a crucial role in polar ozone depletion. The Arctic polar vortex reaches its peak intensity in mid-winter, whereas the Antarctic vortex usually strengthens in early spring. As a result, the strong ozone depletion is observed every year over the Antarctic, while over the Arctic short-term ozone loss occasionally occurs in late winter or early spring. However, the cause of such a difference in the life cycles of the Arctic and Antarctic polar vortices is still not completely clear. Based on the ERA-Interim reanalysis data, we show a high agreement between the seasonal variations of temperature in the subtropical lower stratosphere and zonal wind in the subpolar and polar lower stratosphere in the Southern Hemisphere. Thus, the spring strengthening of the Antarctic polar vortex can occur due to the seasonal temperature increase in the subtropical lower stratosphere in this period.  相似文献   
12.
大气臭氧与气溶胶垂直分布的高空气球探测   总被引:17,自引:2,他引:17  
本文给出了1993年9月12日利用高空科学气球在河北省香河地区探测到的大气臭氧和气溶胶的垂直分布。结果发现:(1) 大气臭氧的数密度在整个对流层较低(~10[12]mol/cm3),并从地面到对流层顶略有下降;对流层顶以上开始快速增加,极值层高度在~24 km,其值为4.78×10[12]mol/cm3;臭氧分压有类似的分布特征,极值146×10[-4]Pa,位于同一高度;(2) 在平流层低层,臭氧分压有一个次极值62×10[-4]Pa,位于15~16 km;(3) 0~30 km大气气溶胶数密度呈现出三个峰值:143,8和1.1 个/cm[3],分别位于近地面、5 km和21 km;(4)气溶胶的数密度谱在对流层为双模态;在平流层,次峰消失。同时,我们还与其他观测结果作了比较分析。  相似文献   
13.
利用不同的污染物质在被臭氧氧化时发光特性不同的原理检测水质污染。检测出来的发光光谱与不同污染源的特征光谱进行对比,辅助发光时序等特征,检测几种污染物的含量和确定污染源。对涉及的有关技术问题进行了探讨。  相似文献   
14.
利用卫星资料分析我国北方东西部臭氧分布差异   总被引:2,自引:0,他引:2       下载免费PDF全文
利用SAGE Ⅱ和HALOE臭氧垂直分布资料和TOMS臭氧总量资料, 研究我国北方(45°~55°N和35°~45°N范围), 东部(105°~135°E) 和西部(75°~105°E) 大气臭氧总量和垂直分布特征和差异。结果表明:我国北方东部冬季、春季和秋季臭氧总量明显大于西部, 主要表现在平流层臭氧极大值附近及其以下高度臭氧含量东部比西部明显偏大, 这种差异在冬、春季尤为明显; 随着纬度的降低, 冬季和秋季臭氧总量东、西部差异减小, 但春季臭氧总量东、西部差异没有明显改变; 夏季, 在45°~55°N范围, 东、西部臭氧分布没有明显差异, 但在35°~45°N范围, 臭氧分布东、西部差异较明显, 臭氧总量东、西部差异达到20.6 DU, 16 km以下臭氧柱总量东、西部差异达到12.8 DU。该文还对导致我国东、西部臭氧分布差异的原因进行了分析。  相似文献   
15.
Rate constants for the gas-phase reactions of OH radicals, NO3 radicals and O3 with the C7-carbonyl compounds 4-methylenehex-5-enal [CH2=CHC(=CH2)CH2CH2CHO], (3Z)- and (3E)-4-methylhexa-3,5-dienal [CH2=CHC(CH3)=CHCH2CHO] and 4-methylcyclohex-3-en-1-one, which are products of the atmospheric degradations of myrcene, Z- and E-ocimene and terpinolene, respectively, have been measured at 296 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained (in cm3 molecule–1 s–1 units) were: for 4-methylenehex-5-enal, (1.55 ± 0.15) × 10–10, (4.75 ± 0.35) × 10–13 and (1.46 ± 0.12) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3Z)-4-methylhexa-3,5-dienal: (1.61 ± 0.35) × 10–10, (2.17 ± 0.30) × 10–12, and (4.13 ± 0.81) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3E)-4-methylhexa-3,5-dienal: (2.52 ± 0.65) × 10–10, (1.75 ± 0.27) × 10–12, and (5.36 ± 0.28) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; and for 4-methylcyclohex-3-en-1-one: (1.10 ± 0.19) × 10–10, (1.81 ± 0.35) × 10–12, and (6.98 ± 0.40) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively. These carbonyl compounds are all reactive in the troposphere, with daytime reaction with the OH radical and nighttime reaction with the NO3 radical being predicted to dominate as loss processes and with estimated lifetimes of about an hour or less.  相似文献   
16.
近30a北极平流层臭氧的季节和年际变化特征   总被引:1,自引:0,他引:1  
综合利用1978-2011年TOMS(Total Ozone Mapping Spectrometer)和OMI(Ozone Monitoring Instrument)臭氧总量资料,MLS(Microwave Limb Sounder)臭氧廓线资料以及NCEP/NCAR再分析气象场资料,对比研究了近30a南北极臭氧总量的年际变化和季节变化差异,重点分析了2010/2011年冬末春初北极臭氧出现的异常损耗现象,探讨北极春季臭氧低值产生的原因。结果表明:与南极地区一年四季都保持一个臭氧低值中心明显不同,北极臭氧总量的减少则是伴随着整个春夏季(4-8月),在秋季(10月)达到最低值,冬季(11月-次年2月)北极臭氧快速恢复,这主要是由于南北半球极地地区环流差异和温度差异造成的。南北两极年均O3总量呈下降趋势,两极地区O3总量年际变化最大的季节是春季。近30a,北极在1997和2011年春季(3-4月)分别达到极低值355DU和361DU,但近年来两极臭氧年际变化趋势不明显。2011年春季,北极地区出现的较严重臭氧低值现象从3月中旬至4月中旬持续了近1个月,2010/2011年冬春季平流层低温和臭氧低值对应关系很好。  相似文献   
17.
By use of 1948-2007 NCEP/NCAR reanalysis monthly geopotential data, a set of circulation indices are defined to characterize the polar vortex at 10 hPa in the Southern Hemisphere, including area-(S), intensity-(P) and centre position-(λc , φc) indices. Sea-sonal variation, interannual anomalies and their possible causes of 10 hPa polar vortex in the Southern Hemisphere are analyzed by using these indices, the relationship between 10 hPa polar vortex strength and the Antarctic Oscillation are analyzed as well. The results show that: (1) the polar region at 10 hPa in the Southern Hemisphere is controlled by anticyclone (cyclone) from Dec. to Jan. (from Mar. to Oct.), Feb. and Nov. are circulation transition seasons. (2) Intensity index (P) and area index (S) of anticy-clone (cyclone) in Jan. (Jul.) show a significant spike in the late 1970s, the anticyclone (cyclone) enhances (weakens) from ex-tremely weak (strong) oscillation to near the climatic mean before a spike, anticyclone tends to the mean state from very strong oscillation and cyclone oscillates in the weaker state after the spike. (3) There is significant interdecadal change for the anticyclone center in Jan., while markedly interannual variation for cyclone center in July. (4) The ozone anomalies can cause the interannual anomaly of the polar anticyclone at 10 hPa in the Southern Hemisphere in Jan. (positive correlation between them), but it is not related to the polar cyclone anomalies. (5) There is notable negative correlation between the polar vortex intensity index P and the Antarctic Oscillation index (AAOI), thus AAOI can be represented by P.  相似文献   
18.
A 2-D global chemistry-transport model is set up in this paper.The model simulates the atmospheric ozone distributions well with specified dynamical conditions.The analysis of ozone variation mechanism shows that ozone is chemically in quasi-equilibrium except for the polar night region where the variation of ozone concentration is under the control of dynamical processes,that the oxygen atoms which produce ozone are mainly provided by the photolysis of O2 in the upper stratosphere and by the photolysis of NO2 in the lower stratosphere and the troposphere.and that the ozone is destroyed mainly by NOx:the reactions between NOx and O3 and the odd oxygen cycle contribute 80% to more than 90% of the ozone destruction.  相似文献   
19.
近年来武汉市臭氧污染日益严峻,成为影响空气质量达标的瓶颈,弄清臭氧及其前体物非线性关系是臭氧防控的关键和基础.本研究基于武汉中心城区2018年4—9月臭氧及其前体物在线观测数据,分析出武汉市臭氧浓度受前体物和气象条件等因素的共同影响,呈较为明显的季节变化和日变化特征.观测期间武汉市大气挥发性有机物(VOCs)平均体积分数为32.5×10-9,烷烃是武汉市VOCs的主要组分,其次是含氧VOCs (OVOCs)和卤代烃.利用基于观测的模型定量分析臭氧与前体物之间的关系,发现削减VOCs会引起臭氧生成潜势的显著下降,而削减氮氧化物则会使臭氧生成潜势升高,说明武汉市臭氧生成处于VOCs控制区.在人为源VOCs中,间/对二甲苯和邻二甲苯的相对增量反应活性(RIR)最高,是影响臭氧生成的关键组分.  相似文献   
20.
In the visible spectrum, the atmospheric attenuations to sunlight mainly include aerosol scattering, atmospheric molecule Rayleigh scattering and ozone absorption, while in the near-infrared spectrum (from 650 nm to 1 000 nm), we must take water-vapor absorption into account. Based on the atmospheric correction theory, using spectrum irradiance data measured by Instantaneous Ground spectrometer, ozone content measured by Microtops Ⅱ ozone monitor, water-vapor content and aerosol optical thickness measured by sun photometer, we give a new way to study water-vapor absorption to sunlight, and the result shows that the main peak values of water-vapor absorption coefficients are 0.025 cm^-1, 0.073 cm^-1, 0.124 cm^-1, 0.090 cm^-1, 0.141 cm^-1 and 0.417 cm^-1, which respectively lie at 692 nm, 725 nm, 761 nm, 818 nm, 912 nm and 937 nm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号