全文获取类型
收费全文 | 266篇 |
免费 | 40篇 |
国内免费 | 59篇 |
专业分类
测绘学 | 9篇 |
大气科学 | 3篇 |
地球物理 | 42篇 |
地质学 | 95篇 |
海洋学 | 203篇 |
天文学 | 1篇 |
综合类 | 11篇 |
自然地理 | 1篇 |
出版年
2024年 | 1篇 |
2023年 | 2篇 |
2022年 | 9篇 |
2021年 | 11篇 |
2020年 | 7篇 |
2019年 | 15篇 |
2018年 | 18篇 |
2017年 | 30篇 |
2016年 | 16篇 |
2015年 | 16篇 |
2014年 | 17篇 |
2013年 | 15篇 |
2012年 | 9篇 |
2011年 | 15篇 |
2010年 | 15篇 |
2009年 | 6篇 |
2008年 | 9篇 |
2007年 | 13篇 |
2006年 | 8篇 |
2005年 | 13篇 |
2004年 | 18篇 |
2003年 | 8篇 |
2002年 | 14篇 |
2001年 | 13篇 |
2000年 | 6篇 |
1999年 | 6篇 |
1998年 | 7篇 |
1997年 | 4篇 |
1996年 | 4篇 |
1995年 | 7篇 |
1994年 | 9篇 |
1993年 | 3篇 |
1992年 | 7篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1988年 | 1篇 |
1985年 | 4篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1980年 | 2篇 |
排序方式: 共有365条查询结果,搜索用时 15 毫秒
11.
在圆筒形防波堤和V形防波堤的基础上,结合离岸堤后形成V形和半圆形连续出现的韵律海岸的地貌平面形态特点,提出一种前墙为连续的半圆筒形防波堤形式。通过在波浪水槽内进行规则波物理模型试验,探究这一新型防波堤的波压力分布规律及波高、周期、水深等因素对波压力的影响。将试验结果与海港水文公式和合田良实公式计算的理论值对比分析,给出了以合田良实公式的折减系数来拟合新型弧形防波堤波浪总水平力的计算公式。结果表明:新型弧形防波堤上的波压力随波高、周期的增大而增大,其水平波浪总力比同等尺度直墙少10%左右。 相似文献
12.
Prediction of streamwise flow-induced vibration of a circular cylinder in the first instability range 总被引:1,自引:0,他引:1
The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. An approach is applied to calibrate the empirical parameters in the present model; the numerical and experimental results are compared to validate the proposed model. It can be found that the present prediction model is accurate and sufficiently simple to be easily applied in practice. 相似文献
13.
In this paper, the principle of mirror image is used to transform the problem of wave diffraction from a circular cylinder in front of orthogonal vertical walls into the problem of diffraction of four symmetric incident waves from four symmetrically arranged circular cylinders, and then the eigenfunction expansion of velocity potential and Grafs addition theorem are used to give the analytical solution to the wave diffraction problem. The relation of the total wave force on cylinder to the distance between the cylinder and orthogonal vertical walls and the incidence angle of wave is also studied by numerical computation. 相似文献
14.
ABSTRACTGeotechnical strata are often treated as horizontally homogeneous for hydromechanical analysis due to the vertical deposition of geological layers; however, such a treatment becomes no longer valid when vertical drilling or construction causes the localized disturbance of subsurface, which would result in radial heterogeneity of geomaterials. This paper presents a poroelastic solution for the saturated multilayered cylinder where multilayer is used to represent radial heterogeneity. After the application of Laplace transform, the governing equations in cylindrical coordinates are derived to obtain the stiffness matrix between stresses, displacements, and pore water pressure. The global matrix is assembled by the boundary conditions and the compatibility of interfaces between adjacent layers. Under time-dependent horizontal compression loads, a parametric study is performed for a cylinder comprised of two layers with distinct properties, and the results show that the load frequency and radial heterogeneity play a significant role in hydromechanical behavior of geomaterials: (1) the time-varying loading can induce a negative pore pressure, and the influence of cyclic loading with a high frequency is limited near the outer surface; (2) the radial heterogeneity due to permeability and compressibility affects the development of pore pressure. 相似文献
15.
C.H.K. Williamson 《Applied Ocean Research》1985,7(2):97-106
The most widely used mathematical model to represent flow-induced in-line forces on structures is based on the Morison1 equation. The present paper investigates the validity of using an extension of Morison's equation for non-stationary structures, by comparing predictions with results from a simple laboratory experiment. An elastically-mounted circular cylinder is placed in the sinusoidal flow of a U-tube, and responds in-line with the flow. Cylinder forces and responses are recorded over a range of Keulegan Carpenter numbers up to 35. An equation of motion is solved simply by using relative coordinates and by employing equivalent linearisation. The linear results are compared over a wide variation of parameters with solutions using the full nonlinear equation. Thereafter experimental results are compared with linear predictions. 相似文献
16.
The large cylinder is a new-type structure that has been applied to harbor and offshore engineering. An analytic method of the relationship between loads and the structure displacement is developed based on the failure mode of deep embedded large cylinder structures. It can be used to calculate directly the soil resistance and the ultirnate bearing capacity of the structure under usage. A new criterion of the large cylinder structure, which discriminates the deep embedded cylinder from the shallow embedded cylinder, is defined. Model tests prove that the proposed method is feasible for the analysis of deep embedded large cylinder structures. 相似文献
17.
不同倒角半径下方柱绕流的数值模拟及水动力特性研究 总被引:1,自引:0,他引:1
为了研究不同倒角半径对方柱绕流特性的影响,采用有限体积法,模拟了雷诺数Re为22 500、倒角半径为0.1D(D为方柱边长的长度)、0.2D和0.3D时方柱的绕流过程。方柱近壁面采用增强壁面函数,模型采用SST k–?湍流模型。根据模拟结果给出了不同倒角半径下方柱的流场涡量图以及阻力系数Cd和升力系数Cl;利用快速傅里叶变换法得到斯托罗哈数St。结果表明,倒角半径的增加改变了方柱的分离点,使得尾流区长度增加,旋涡尺度减小;Cd和Cl的振动幅值呈现先减小后增大的趋势,倒角半径为0.1D和0.2D时方柱受力较小,不存在倒角时方柱受力较大,倒角半径为0.3D时方柱受力最大;随着倒角半径的增加,柱体截面形式越接近圆形,斯托罗哈数逐渐增大,漩涡脱落频率更快。 相似文献
18.
The hydrodynamic forces on the stationary partially submerged cylinder are investigated through towing test with Reynolds number ranging from 5 × 104 to 9 × 105. Three test groups of partially submerged cylinders with submerged depths of 0.25 D, 0.50 D, and 0.75 D and one validation group of fully submerged cylinders are conducted. During the experiments, the hydrodynamic forces on the cylinders are measured using force sensors. The test results show a considerable difference in the hydrodynamic coefficients for the partially submerged cylinders versus the fully submerged cylinders. A significant mean downward lift force is first observed for the partially submerged cylinders in a steady flow. The maximum of the mean lift coefficients can reach 1.5. Two distinct features are observed due to the effects of overtopping: random distributions in the mean drag coefficients and a clear quadratic relationship between the mean lift coefficients and the Froude number appear in the non-overtopping region. However, the novel phenomenon of a good linear relationship with the Froude number for the mean hydrodynamic coefficients is clearly shown in the overtopping region. In addition, fluctuating hydrodynamic coefficients are further proposed and investigated. These results are helpful to have a better understanding of the problem and to improve related structural designs. 相似文献
19.
Direct numerical simulation was conducted to investigate the flow past a slotted cylinder at low Reynolds number (Re) of 100. The slotting of cylinder affects the boundary layer separation, vortex formation position, recirculation region length and wake width, which are determined by the type of slit. The streamwise slit (SS1), T-shaped slit (SS3) and Y-shaped slit (SS4) act as passive jets, while the transverse slit (SS2) achieves an alternate self-organized boundary layer suction and blowing. The flow rate in slits fluctuates over time due to the alternate vortex shedding and fluctuating pressure distribution around the cylinder surface. One fluctuation cycle of flow rate is caused by a pair of vortices shedding for SS2, SS3 and SS4, while it is created by each vortex shedding for SS1. The wall shear stress and flow impact on the slit wall partly contribute to the hydrodynamic forces acting on the slotted cylinder. Taking into account the internal wall of slit, the transverse slit plays the best role in suppressing the fluid forces with drag reduction of 1.7% and lift reduction of 17%. 相似文献
20.
The incompressible viscous uniform and shear flow past a circular cylinder is studied. The two-dimensional Navier-Stokes equations are solved by a finite element method. The governing equations are discretized by a weighted residual method in space. The stable three-step scheme is applied to the momentum equations in the time integration. The numerical model is firstly applied to the computation of the lid-driven cavity flow for its validation. The computed results agree well with the measured data and other numerical results. Then, it is used to simulate the viscous uniform and shear flow over a circular cylinder for Reynolds numbers from lO0 to lO00. The transient time interval before the vortex shedding occurs is shortened considerably by introduction of artificial perturbation. The computed Strouhal number, drag and lift coefficients agree well with the experimental data. The computation shows that the finite element model can be successfully applied to the viscous flow problem. 相似文献