首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6093篇
  免费   1024篇
  国内免费   2012篇
测绘学   449篇
大气科学   1602篇
地球物理   896篇
地质学   2596篇
海洋学   1851篇
天文学   528篇
综合类   457篇
自然地理   750篇
  2024年   28篇
  2023年   88篇
  2022年   238篇
  2021年   266篇
  2020年   276篇
  2019年   328篇
  2018年   268篇
  2017年   262篇
  2016年   293篇
  2015年   325篇
  2014年   381篇
  2013年   410篇
  2012年   406篇
  2011年   430篇
  2010年   323篇
  2009年   432篇
  2008年   417篇
  2007年   444篇
  2006年   429篇
  2005年   409篇
  2004年   375篇
  2003年   344篇
  2002年   284篇
  2001年   270篇
  2000年   207篇
  1999年   185篇
  1998年   172篇
  1997年   116篇
  1996年   115篇
  1995年   109篇
  1994年   96篇
  1993年   75篇
  1992年   61篇
  1991年   61篇
  1990年   43篇
  1989年   38篇
  1988年   44篇
  1987年   15篇
  1986年   15篇
  1985年   10篇
  1984年   14篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   9篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有9129条查询结果,搜索用时 171 毫秒
991.
以往关于冻土屈服特性的研究很少考虑含水量的影响,但实际工程中经常遇到的是变含水量情况,因此本文通过-5.0℃条件下高含冰量冻结砂土的一系列三轴压缩试验,系统地研究了含水量对屈服特性的影响,并且由此建立了带有含水量参数的偏应力-剪应变增量型关系式。试验结果表明:随含水量的变化,应力-应变曲线类型有明显变化,即在不同的含水量区间,含水量对硬化规律有不同的影响特性,因此为了使屈服函数的形式更加简单和提高拟合准确度,对于屈服函数的具体形式应该根据塑性剪应变(硬化参数)和含水量不同区间进行分别确定;当塑性剪应变较小时(0.00%~1.00%),随含水量的增大,偏应力逐渐增加,而当塑性剪应变较大时(大于1.00%),随含水量的增大,偏应力有一个先减小后增大的变化过程,并且42.0%可以作为含水量转折点;通过分段硬化原则建立的带有含水量参数的屈服函数与偏应力-剪应变的增量型关系式的模拟值与试验点基本相吻合,这说明得到的屈服函数与偏应力-剪应变的增量型关系式可以用于不同含水量条件下屈服面和偏应力-剪应变曲线的预测。  相似文献   
992.
图拉尔根、香山和天宇、白石泉岩浆铜镍硫化物矿床分别位于新疆东天山的觉罗塔格构造带和中天山地块,角闪石在这些矿床中均以贯通矿物产出。本研究通过这些矿床角闪石的主量和微量元素含量,讨论两个构造单元成矿岩浆的性质和演化过程。四个矿床的角闪石种属主要为韭闪石、镁绿钙闪石、浅闪石、钛闪石、钙镁闪石和镁闪石,结晶温度区间为940~1080℃,压力区间为250~450MPa,相当于11~15km的深度。图拉尔根和香山矿床的角闪石结晶温度和压力均相对较低(平均分别为1027℃、318MPa和1013℃、313MPa),可能与其所处的觉罗塔格构造带断裂发育,成矿母岩浆易于侵位到较浅处结晶有关。四个矿床角闪石结晶时岩浆的含水量均较高(4%左右),可能是俯冲交代作用导致的地幔源区本身水含量较高以及角闪石结晶较晚共同作用的结果。相较于觉罗塔格构造带的图拉尔根和香山矿床(0 ΔNNO 1. 7),角闪石氧逸度计指示中天山地块天宇和白石泉矿床的氧逸度变化范围大且偏低(分别是-0. 6 ΔNNO 1. 7和-0. 4 ΔNNO 1. 8)。中天山铜镍矿床的氧逸度特征及相对觉罗塔格构造带较低的微量元素Ce/Pb比值指示其岩浆侵位过程中受到的古老地块的混染作用较强。以上研究表明角闪石虽是玄武质岩浆中较晚结晶的矿物,但能为示踪铜镍矿床岩浆演化提供重要线索。  相似文献   
993.
利用1971—2016年辽宁省61个气象站气温、地表温度、积雪日数和积雪深度资料,分析了积雪的保温作用及其对地气温差的影响。结果表明:更换自动站前后地表温度观测方式的差异导致地气温差显著增大,地气温差的增大程度受所在区域积雪日数、积雪深度的影响显著。在积雪期较长、积雪较厚的地区,积雪引起反照率增大,使得雪面温度降低,导致雪气温差减小,而雪的保温作用使得地气温差显著增大。因此,更换自动站前地(雪)气温差与积雪日数呈显著负相关,而更换自动站后地气温差与积雪日数呈显著正相关。各台站之间地气温差随积雪深度的变化系数差异较大,为0.045~0.858 ℃?cm-1,在年平均积雪日数<40 d、年平均极端积雪深度<10 cm的区域,积雪的保温作用随积雪深度增大而显著增大;在年平均积雪日数>40 d、年平均极端积雪深度>10 cm的区域,10 cm以下的积雪对土壤保温作用随积雪深度增大显著,当积雪深度>10 cm后,其保温作用随积雪深度增大的幅度明显减小。  相似文献   
994.
任倩  周长艳  夏阳  岑思弦  龙园 《冰川冻土》2019,41(4):783-792
利用ERA-Interim提供的地表感热、环流场资料和1979-2013年753站中国春季气温观测资料探讨了青藏高原(以下简称高原)东部春季感热通量与我国东部气温的关系。春季高原东部感热与我国东部气温在年际变化上存在密切的相关关系。去除9年滑动平均以后的SVD第一模态结果表明,当高原东部感热出现南弱(强)北强(弱)时,对应我国东北和华南地区的气温异常偏低(高)。当春季高原感热呈现南负北正的分布时,高层200 hPa上,高纬东风异常减弱背景西风有利于冷空气的南下,加之副热带西风急流显著增强,有利于东北地区形成气旋性环流。中低层环流场上,我国北方地区上空为一深厚的东北冷涡所控制,从对流层低层到高层,均呈现较强的气旋式环流分布。一方面,它引导西伯利亚冷空气南下,造成我国东北地区气压异常减弱,气温异常偏低;另一方面,其西侧北风异常阻滞了华南地区上空的背景西南风,不利于暖气流的输送。进一步分析得出,与PC1相关的南北温度差值场上,东亚地区上空从低纬到高纬呈现“负-正-负”的分布形势,有利于副热带西风急流在我国上空的显著增强。气旋中心上暖下冷的结构,导致位涡显著发展并向低层伸展、侵入,增强了对流层中低层的气旋性环流。气旋中心整个对流层为深厚的异常干空气,湿度负值中心与冷中心相对应,表明干冷空气异常下传发展。干侵入使得冷涡加强发展,维持了异常气旋性环流,导致春季东北、华南地区的异常降温。虽然前冬Nino3.4区海温与春季感热相关较好,但其对我国东部春季气温影响并不显著。  相似文献   
995.
地下水源热泵系统常会出现抽水井泵砂、抽水井和回灌井堵塞等问题,影响系统的正常运行或系统效率。以湖北省荆州市某地下水源热泵工程为例,分析了江汉平原广泛分布的卵砾石夹细砂含水层中成孔方法选择、滤料及过滤管设计中存在的问题;指出了目前在过滤管外包不锈钢丝网是防止在细砂层中水井泵砂的有效手段之一,但宜与泥浆密度轻、对地层污染小的反循环成孔工艺配合使用,且仍要根据含水层的颗粒级配曲线选择滤料,发挥滤料的过滤作用,避免过滤压力转移到包网过滤管,以减少抽水井堵塞。  相似文献   
996.
张辉 《探矿工程》2019,46(5):52-57
日照万泽丰渔业有限公司黄海冷水团优质鱼类绿色养殖项目是山东省首批公布的新旧动能转换重大项目,规划海域面积20 km2。工程勘察是工程建设项目首先开展的基础性工作,是项目选址、设计和施工的重要依据。本文通过有效盘活有限资源,科学论证、严谨施工,创新钻探船改造、重力导向装置实现深海套管安放,成功实施了该项目的工程勘察工作,为远海深水勘察施工提供了经验。  相似文献   
997.
998.
由于吹填过程的水力分选作用钙质砂土地基颗粒分布不均匀,容易形成分布不均、形态各异的以不同细粒含量的粉细砂层为主的细粒汇集层,引起钙质砂土地基承载力和不均匀沉降问题。开展不同细粒含量的粉细砂三轴固结排水剪切试验,分析细粒含量对钙质砂土力学特性的影响。研究结果表明,(1)当细粒含量增加时相同围压下土样剪胀性逐渐减弱,且峰值偏应力也逐渐减小;(2)各组试样干密度为1.40 g/cm3状态下各含量粉细砂均表现出应变软化特征,当细粒含量为10%时粉细砂土体强度稳定性最差,之后稳定性随细粒含量增加而逐渐增大;(3)钙质细砂由于颗粒咬合作用,具有表观黏聚力,当细粒含量小于40%时,随着细粒含量增加,颗粒之间的咬合作用显著降低,表观黏聚力线性减小。研究成果可为粉细砂层的地基处理及边坡稳定分析提供参考。  相似文献   
999.
土?膨润土垂直防渗墙在美国已广泛应用于城市卫生填埋场中,我国的工程中则应用较少。由国产膨润土与原地层土混合在自重应力作用下固结形成的防渗墙,其渗透性、孔隙和压缩性如何受膨润土掺量的影响,针对该一问题,使用福建标准砂模拟原地层,以3种典型膨润土作为混合料,在各掺量下对砂?膨润土填筑土料开展改进柔性壁渗透试验固结试验,研究不同膨润土掺量对填筑料渗透系数k、孔隙率n与压缩系数av影响。结果表明,膨润土和砂形成防渗墙时存在一个对应最小n和av的最优掺量Copt,当膨润土掺量小于等于Copt时,随着掺量增加,填筑料k下降很快,av缓慢减小;当掺量大于Copt后,随掺量上升,k降低速度趋缓,av快速地升高。理论上,膨润土掺入较少时黏土颗粒仅填充砂粒间的孔隙而不影响砂粒堆积,掺量达到一定程度后膨润土使砂粒彼此分离,悬浮在其中,填筑料的孔隙率随掺量而增大,可能是宏观上造成最优掺量产生的主要原因。  相似文献   
1000.
Comprehensive quantitative evaluation of shale gas content and the controlling factors in different occurrence states is of great significance for accurately assessing gas-bearing capacity and providing effective well-production strategies. A total of 122 core samples from well JY-A in the Fuling shale gas field were studied to reveal the characteristics of S_1 l shale,15 of which were selected to further predict the shale gas content in different occurrence states, which are dependent on geological factors in the thermal evolution process. Geological parameters were researched by a number of laboratory programs, and the factors influential in controlling shale gas content were extracted by both PCA and GRA methods and prediction models were confirmed by the BE method using SPSS software. Results reveal that the adsorbed gas content is mainly controlled by TOC, Ro, SSA, PD and pyrite content, and the free gas content is mainly controlled by S_2, quartz content, gas saturation and formation pressure for S_1 l in well JY-A. Three methods, including the on-site gas desorption method, the empirical formula method, and the multiple regression analysis method were used in combination to evaluate the shale gas capacity of well JY-A, all of which show that the overall shale gas content of well JY-A is in the range of 2.0–5.0 m~3/t and that the free gas ratio is about 50%, lower than that of well JY-1. Cause analysis further confirms the tectonics and preservation conditions of S_1 l in the geological processes, especially the influence of eastern boundary faults on well JY-A, as the fundamental reasons for the differences in shale gas enrichment in the Jiaoshiba area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号