首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8897篇
  免费   1342篇
  国内免费   2166篇
测绘学   246篇
大气科学   441篇
地球物理   1489篇
地质学   5283篇
海洋学   1119篇
天文学   2178篇
综合类   425篇
自然地理   1224篇
  2024年   67篇
  2023年   200篇
  2022年   390篇
  2021年   388篇
  2020年   389篇
  2019年   408篇
  2018年   364篇
  2017年   354篇
  2016年   370篇
  2015年   421篇
  2014年   395篇
  2013年   511篇
  2012年   444篇
  2011年   436篇
  2010年   398篇
  2009年   652篇
  2008年   547篇
  2007年   597篇
  2006年   654篇
  2005年   502篇
  2004年   494篇
  2003年   532篇
  2002年   424篇
  2001年   349篇
  2000年   358篇
  1999年   299篇
  1998年   319篇
  1997年   220篇
  1996年   165篇
  1995年   159篇
  1994年   159篇
  1993年   103篇
  1992年   93篇
  1991年   59篇
  1990年   54篇
  1989年   32篇
  1988年   25篇
  1987年   28篇
  1986年   15篇
  1985年   6篇
  1984年   8篇
  1983年   6篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
利用方式对东北黑土粘土矿物组成的影响   总被引:1,自引:0,他引:1  
土地利用方式是影响土壤可持续利用的重要因素。粘土矿物是土壤重要的活泼物质,会受利用方式的影响而发生改变。为了揭示利用方式对土壤粘土矿物的影响,对不同利用方式下的东北黑土进行土壤理化特性及粘粒XRD分析。结果表明:荒地、旱田(大豆)、旱田(玉米)、水田利用的土壤矿物颗粒的风化依次增强,伊利石的含量和结晶度也依次降低。经水田利用后的黑土,粘土矿物的演变过程为:云母→伊利石→蛭石和绿泥石。定量结果表明黑土水田利用会出现蛭石绿泥石化现象。综合说明旱田利用会使土壤结构破坏以及水土流失加剧,而水田利用则能较好的协调土壤理化性质,可较大程度的改良土壤。  相似文献   
92.
为研究农业开发与生态环境的关系,总结不同历史时期鄱阳湖流域农业生态环境特征及其演变特征.其总体特征反映在森林、土地、水、生物资源和生态环境建设方面.生态环境变迁历史对该流域农业发展具有重要的启示.  相似文献   
93.
94.
吴珍汉 《现代地质》1992,6(1):83-95
已有的几种普通铅同位素模式仅反映了一些封闭体系铅同位素混合的特殊情况,不便于有效地应用于地质历史时期复杂的地质作用过程。本文应用概率论方法,从理论上分析包括开放体系在内的13种不同系统普通铅同位素混合的23种情况,讨论各种情况下铅同位素资料的地质年代学意义与地质事件发生年代的计算方法,从而建立多阶段铅同位素演化的系统模式。应用读系统模式研究燕山地区的成岩成矿时代,所得结果与其它方法测出的年龄一致。  相似文献   
95.
本文通过对中国东部新生代玄武岩中二辉橄榄岩包体的研究认为,上地幔岩石变形结构和组构类型在不同大地构造单元中的分布是不同的,据此,可划分为华北—东北上地幔弱变形域和东南沿海上地幔强变形域。与变形特征对应的东南沿海地区包体稀土元素配分型式为LREE富集型,华北—东北地区包体稀土元素配分型式则为平坦型和轻微LREE富集型,这表明上地幔流变剪切作用强度与稀土元素富集作用呈正相关,同时反映出上地幔流变状态的差异。根据包体变形特征,我们提出华北—东北地区与东南沿海地区中新生代具有截然不同的大地构造演化特征。  相似文献   
96.
查明金矿床形成的时空分布的不均匀性,对指导金矿床预测有重要意义。笔者在我国胶东、小秦岭等主要金矿带研究的基础上,从三个方面论述了金矿床成矿演化规律:1)金矿床在地质历史上的成矿演化;2)不同地质作用过程中的成矿演化;3)成矿过程中不同矿化阶段的定向演化。这些规律对优选金矿床勘查靶区和矿床(点)评价都有重要指导意义。  相似文献   
97.
The geology and tectonics of the Himalaya has been reviewed in the light of new data and recent studies by the author. The data suggest that the Lesser Himalayan Gneissic Basement (LHGB) represents the northern extension of the Bundelkhand craton, Northern Indian shield and the large scale granite magmatism in the LHGB towards the end of the Palæoproterozoic Wangtu Orogeny, stabilized the early crust in this region between 2-1.9 Ga. The region witnessed rapid uplift and development of the Lesser Himalayan rift basin, wherein the cyclic sedimentation continued during the Palæoproterozoic and Mesoproterozoic. The Tethys basin with the Vaikrita rocks at its base is suggested to have developed as a younger rift basin (~ 900 Ma ago) to the north of the Lesser Himalayan basin, floored by the LHGB. The southward shifting of the Lesser Himalayan basin marked by the deposition of Jaunsar-Simla and Blaini-Krol-Tal cycles in a confined basin, the changes in the sedimentation pattern in the Tethys basin during late Precambrian-Cambrian, deformation and the large scale granite activity (~ 500 ± 50 Ma), suggests a strong possibility of late Precambrian-Cambrian Kinnar Kailas Orogeny in the Himalaya. From the records of the oceanic crust of the Neo-Tethys basin, subduction, arc growth and collision, well documented from the Indus-Tsangpo suture zone north of the Tethys basin, it is evident that the Himalayan region has been growing gradually since Proterozoic, with a northward shift of the depocentre induced by N-S directed alternating compression and extension. During the Himalayan collision scenario, the 10–12km thick unconsolidated sedimentary pile of the Tethys basin (TSS), trapped between the subducting continental crust of the Indian plate and the southward thrusting of the oceanic crust of the Neo-Tethys and the arc components of the Indus-Tangpo collision zone, got considerably thickened through large scale folding and intra-formational thrusting, and moved southward as the Kashmir Thrust Sheet along the Panjal Thrust. This brought about early phase (M1) Barrovian type metamorphism of underlying Vaikrita rocks. With the continued northward push of the Indian Plate, the Vaikrita rocks suffered maximum compression, deformation and remobilization, and exhumed rapidly as the Higher Himalayan Crystallines (HHC) during Oligo-Miocene, inducing gravity gliding of its Tethyan sedimentary cover. Further, it is the continental crust of the LHGB that is suggested to have underthrust the Himalaya and southern Tibet, its cover rocks stacked as thrust slices formed the Himalayan mountain and its decollement surface reflected as the Main Himalayan Thrust (MHT), in the INDEPTH profile.  相似文献   
98.
于炳松  裘愉卓 《现代地质》1998,12(2):173-179
摘 要  通过对贵州地区自新元古界板溪群—三叠系深水相泥质岩系统的稀土元素地球化学 研究‚发现寒武系、泥盆系和上二叠统这3个稀土元素组成明显不同于其他层位和后太古代 页岩稀土元素特征的异常层‚并由此构成了地质历史中3个明显的稀土元素地球化学旋回。 这3个稀土元素地球化学旋回与本区的大地构造旋回具有明显的一致性‚且上述的3个稀土 元素地球化学异常层正好与盆地发育的明显的拉张裂陷时期相对应‚说明在盆地拉张裂陷时 期来自盆下深部物源的加入是造成稀土元素地球化学异常的根本原因。这为我们正确认识本 区的地壳演化提供了强有力的地球化学证据。  相似文献   
99.
The Kuruktag uplift is located directly northeast of the Tarim craton in northwestern China. Neoarchaean-to-Neoproterozoic metamorphic rocks and intrusive rocks crop out widely in the uplift; thus, it is especially suited for a more complete understanding of the thermal evolution of the Tarim craton. Apatite fission-track (AFT) methods were used to study the exhumation history and cooling of these Precambrian crystalline rocks. Nine apatite-bearing samples were collected from both sides of the Xingdi fault transecting the Kuruktag uplift. Pooled ages range from 146.0 ± 13.4 to 67.6 ± 6.7 Ma, with mean track lengths between 11.79 ± 0.14 and 12.48 ± 0.10 μm. These samples can be divided into three groups based on age and structural position. Group A consists of five samples with AFT apparent ages of about 100–110 Ma and is generally associated with undeformed areas. Group B comprises three specimens with AFT apparent ages lower than 80 Ma and is mostly associated with hanging wall environments close to faults. Group C is a single apatite sample with the oldest relative apparent age, 146.0 ± 13.4 Ma. The modelled thermal history indicates four periods of exhumation in the Kuruktag uplift: late-Early Jurassic (180 Ma); Late Jurassic–Early Cretaceous (144–118 Ma); early-Late Cretaceous (94–82 Ma); and late Cenozoic (about 10 Ma). These cooling events, identified by AFT data, are assumed to reflect far-field effects from multi-stage collisions and accretions of terranes along the south Asian continental margin.  相似文献   
100.
The Altos Cuchumatanes Range is made up of a core of igneous and metamorphic rocks, surrounded by lower Palaeozoic and Mesozoic sedimentary strata. These units constitute the westernmost exposure of basement rocks in Guatemala and represent some of the most important crustal units in the Maya Block. New laser ablation–inductively coupled plasma mass spectrometry U-Pb zircon geochronology allows better definition of their igneous ages, inheritance and petrologic evolution. The Altos Cuchumatanes magmatism occurred during the Middle Ordovician (461 Ma) and lower Pennsylvanian (312–317 Ma), replicating similar age trends present in southern Mexico (Acatlán Complex) and the Maya Block, from Chiapas to central Guatemala (Rabinal-Salamá area) and Belize (Maya Mountains). The U-Pb inheritance from cores of the studied zircons makes it possible to decipher the pre-magmatic history of the area. During the Late Ordovician to Permo-Carboniferous, the Altos Cuchumatanes and Maya Block were located adjacent to northeastern Mexico, near the Mixteco terrane, where Ordovician megacrystic granites intruded a passive-margin sedimentary sequence. The Ordovician granites present at the southern limit of the Maya Block, in the Altos Cuchumatanes, in central Guatemala and in Belize, are the result of partial crustal melting during the initial opening of the Rheic Ocean, when both Maya and Mixteco terranes would have lain close to NW Gondwana until the closure of that ocean. The crystallization of the early Pennsylvanian granites seems to be the result of an E-dipping subduction zone that accommodated convergence between Laurentia and Gondwana.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号