首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   118篇
  国内免费   355篇
测绘学   5篇
大气科学   9篇
地球物理   113篇
地质学   663篇
海洋学   70篇
天文学   10篇
综合类   21篇
自然地理   30篇
  2024年   3篇
  2023年   18篇
  2022年   30篇
  2021年   30篇
  2020年   38篇
  2019年   47篇
  2018年   48篇
  2017年   18篇
  2016年   30篇
  2015年   47篇
  2014年   38篇
  2013年   44篇
  2012年   50篇
  2011年   45篇
  2010年   39篇
  2009年   42篇
  2008年   47篇
  2007年   26篇
  2006年   40篇
  2005年   24篇
  2004年   31篇
  2003年   28篇
  2002年   28篇
  2001年   14篇
  2000年   13篇
  1999年   21篇
  1998年   17篇
  1997年   16篇
  1996年   16篇
  1995年   12篇
  1994年   6篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1987年   1篇
  1985年   2篇
排序方式: 共有921条查询结果,搜索用时 375 毫秒
21.
This paper discusses a series of stress point algorithms for a breakage model for unsaturated granular soils. Such model is characterized by highly nonlinear coupling terms introduced by breakage‐dependent hydro‐mechanical energy potentials. To integrate accurately and efficiently its constitutive equations, specific algorithms have been formulated using a backward Euler scheme. In particular, because implementation and verification of unsaturated soil models often require the use of mixed controls, the incorporation of various hydro‐mechanical conditions has been tackled. First, it is shown that the degree of saturation can be replaced with suction in the constitutive equations through a partial Legendre transformation of the energy potentials, thus changing the thermomechanical state variables and enabling a straightforward implementation of a different control mode. Then, to accommodate more complex control scenarios without redefining the energy potentials, a hybrid strategy has been used, combining the return mapping scheme with linearized constraints. It is shown that this linearization strategy guarantees similar levels of accuracy compared with a conventional strain–suction‐controlled implicit integration. In addition, it is shown that the use of linearized constraints offers the possibility to use the same framework to integrate a variety of control conditions (e.g., net stress and/or water‐content control). The convergence profiles indicate that both schemes preserve the advantages of implicit integration, that is, asymptotic quadratic convergence and unconditional stability. Finally, the performance of the two implicit schemes has been compared with that of an explicit algorithm with automatic sub‐stepping and error control, showing that for the selected breakage model, implicit integration leads to a significant reduction of the computational cost. Such features support the use of the proposed hybrid scheme also in other modeling contexts, especially when strongly nonlinear models have to be implemented and/or validated by using non‐standard hydro‐mechanical control conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
22.
Shrink–swell soils can cause distresses in buildings, and every year, the economic loss associated with this problem is huge. This paper presents a comprehensive system for simulating the soil–foundation–building system and its response to daily weather conditions. Weather data include rainfall, solar radiation, air temperature, relative humidity, and wind speed, all of which are readily available from a local weather station or the Internet. These data are used to determine simulation flux boundary conditions. Different methods are proposed to simulate different boundary conditions: bare soil, trees, and vegetation. A coupled hydro‐mechanical stress analysis is used to simulate the volume change of shrink–swell soils due to both mechanical stress and water content variations. Coupled hydro‐mechanical stress‐jointed elements are used to simulate the interaction between the soil and the slab, and general shell elements are used to simulate structural behavior. All the models are combined into one finite element program to predict the entire system's behavior. This paper first described the theory for the simulations. A site in Arlington, Texas, is then selected to demonstrate the application of the proposed system. Simulation results are shown, and a comparison between measured and predicted movements for four footings in Arlington, Texas, over a 2‐year period is presented. Finally, a three‐dimensional simulation is made for a virtual residential building on shrink–swell soils to identify the influence of various factors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
23.
The present study investigates propagation of a cohesive crack in non‐isothermal unsaturated porous medium under mode I conditions. Basic points of skeleton deformation, moisture, and heat transfer for unsaturated porous medium are presented. Boundary conditions on the crack surface that consist of mechanical interaction of the crack and the porous medium, water, and heat flows through the crack are taken into consideration. For spatial discretization, the extended finite element method is used. This method uses enriched shape functions in addition to ordinary shape functions for approximation of displacement, pressure, and temperature fields. The Heaviside step function and the distance function are exploited as enrichment functions for representing the crack surfaces displacement and the discontinuous vertical gradients of the pressure and temperature fields along the crack, respectively. For temporal discretization, backward finite difference scheme is applied. Problems solved from the literature show the validity of the model as well as the dependency of structural response on the material properties and loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
24.
Aggregate disintegration is a critical process in soil splash erosion. However, the effect of soil organic carbon (SOC) and its fractions on soil aggregates disintegration is still not clear. In this study, five soils with similar clay contents and different contents of SOC have been used. The effects of slaking and mechanical striking on splash erosion were distinguished by using deionized water and 95% ethanol as raindrops. The simulated rainfall experiments were carried out in four heights (0.5, 1.0, 1.5 and 2.0 m). The result indicated that the soil aggregate stability increased with the increases of SOC and light fraction organic carbon (LFOC). The relative slaking and the mechanical striking index increased with the decreases of SOC and LFOC. The reduction of macroaggregates in eroded soil gradually decreased with the increase of SOC and LFOC, especially in alcohol test. The amount of macroaggregates (>0.25 mm) in deionized water tests were significantly less than that in alcohol tests under the same rainfall heights. The contribution of slaking to splash erosion increased with the decrease of heavy fractions organic carbon. The contribution of mechanical striking was dominant when the rainfall kinetic energy increased to a range of threshold between 9 J m−2 mm−1 and 12 m−2 mm−1. This study could provide the scientific basis for deeply understanding the mechanism of soil aggregates disintegration and splash erosion.  相似文献   
25.
In this article, a new constitutive model for soils is proposed. It is formulated by means of plasticity, but in contrast to the precedent works, it presents a yield function describing a surface within the intergranular strain space. This latter is a state variable providing information of the recent strain history. An expression for the plastic strain rate has been proposed to guarantee the stress rate continuity. Under the application of medium or large strain amplitudes, the constitutive equation becomes independent of the intergranular strain and delivers a mathematical structure similar to some Karlsruhe hypoplastic models. Some simulations of monotonic and cyclic triaxial test are provided to evaluate and analyze the model performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
26.
The Simplon Fault Zone is a late-collisional low-angle normal fault (LANF) of the Western Alps. The hanging wall shows evidence of brittle deformation only, while the footwall is characterized by a c. 1 km-thick shear zone (the Simplon Fault Zone), which continuously evolved, during exhumation and cooling, from amphibolite facies conditions to brittle-cataclastic deformations. Due to progressive localization of the active section of the shear zone, the thermal-rheological evolution of the footwall resulted in a layered structure, with higher temperature mylonites preserved at the periphery of the shear zone, and cataclasites occurring at the core (indicated as the Simplon Line). In order to investigate the weakness of the Simplon Line, we studied the evolution of brittle/cataclastic fault rocks, from nucleation to the most mature ones. Cataclasites are superposed on greenschist facies mylonites, and their nucleation can be studied at the periphery of the brittle fault zone. This is characterized by fractures, micro-faults and foliated ultracataclasite seams that develop along the mylonitic SCC′ fabric, exploiting the weak phases mainly represented by muscovite and chlorite. Approaching the fault core, both the thickness and frequency of cataclasite horizons increase, and, as their thickness increases, they become less and less foliated. The fault core itself is represented by a thicker non-foliated cataclasite horizon. No Andersonian faults or fractures can be found in the footwall damage zone and core zone, whilst they are present in the hanging wall and in the footwall further from the fault. Applying a stress model based on slip tendency, we have been able to calculate that the friction coefficient of the Simplon Line cataclasites was <0.25, hence this fault zone is absolutely weak. In contrast with other fault zones, the weakening effect of fluids was of secondary importance, since they accessed the fault zone only after an interconnected fracture network developed exploiting the cataclasite network.  相似文献   
27.
Methane hydrate (MH, also called fiery ice) exists in forms of pore filling, cementing and load-bearing skeleton in the methane hydrate bearing sediment (MHBS) and affects its mechanical behavior greatly. To study the changes of macro-scale and micro-scale mechanical behaviors of MHBS during exploitation by thermal recovery and depressurization methods, a novel 2D thermo-hydro-mechanical bonded contact model was proposed and implemented into a platform of distinct element method (DEM), PFC2D. MHBS samples were first biaxially compressed to different deviator stress levels to model different in-situ stress conditions. With the deviator stress maintained at constant, the temperature was then raised to simulate the thermal recovery process or the pore water pressure (i.e. confining pressure for MH bond) was decreased to simulate the depressurization process. DEM simulation results showed that: during exploitation, the axial strain increased with the increase of temperature (in the thermal recovery method) or decrease of pore water pressure (in the depressurization method); sample collapsed during MH dissociation if the deviator stress applied was larger than the compression strength of a pure host sand sample; sample experienced volume contraction but its void ratio was slightly larger than the pure host sand sample at the same axial strain throughout the test. By comparison with the laboratory test results, the new model was validated to be capable of reproducing the exploitation process by thermal recovery and depressurization methods. In addition, some micro-scale parameters, such as contact distribution, bond distribution, and averaged pure rotation rate, were also analyzed to investigate their relationships with the macroscopic responses.  相似文献   
28.
冻土机械切削破碎机理的研究进展   总被引:1,自引:1,他引:0  
李龙  周琴  张凯  凌雪  张在兴  李耀 《冰川冻土》2021,43(2):638-649
冻土开挖困难、破碎效率低是高寒地区工程建设、地基施工等面临的技术难题。冻土机械切削破碎是冻土开挖的主要方法,其机理研究是提高冻土破碎效率的前提和基础。首先总结了温度、含水率、围压等对冻土复杂力学特性的影响,进而调研分析了冻土机械切削破碎的典型切削力学模型,发现冻土切削机械破碎模式不仅与冻土力学特性密切相关,也与切削参数和刀具结构直接相关,冻土切削过程中存在着最优的切削前角(30°~60°),且深切削和浅切削时冻土内部受力方式存在差异也会导致破坏形式的不同;温度、含水率、围压所造成的冻土力学性能变化会直接导致冻土破坏过程和切削破碎机理的改变,冻土强度随着温度降低表现出先升高然后保持稳定的特性,随着含水率升高呈现出先升高后降低的趋势,冻土破碎存在脆性、塑脆过渡及塑性等不同破坏形式。通过系统总结冻土切削破碎机理研究进展,进一步明确了冻土力学性质主要影响因素、变化特点及其切削破坏损伤特征,为冻土机械切削破碎的切削参数和切削具结构优化提供了设计依据。  相似文献   
29.
In the present paper, a new foundation model has been proposed by introducing a stretched rough elastic membrane in the Pasternak shear layer sandwiched between two spring layers which is an extension of Kerr model. Considering the equilibrium of different elements, the equations governing the elastic settlement response of the model are derived. Finite difference scheme has been employed to solve the governing equations. The parametric studies carried out show the effect of several parameters on the elastic settlement response of the model. The proposed model is well suited for idealizing the behavior of geosynthetic-reinforced granular fill—soft soil system besides other applications.  相似文献   
30.
基于耦合场分割算法的ANSYS二次开发及其应用   总被引:2,自引:0,他引:2  
耦合场分割算法是当前研究的热点之一。本文首先对比研究了瞬态热传导方程和孔压增长消散方程,提出了一种适用于ANSYS二次开发的分割算法,并对2种不同的预测值计算模式对计算稳定性的影响进行了分析。然后,据之对ANSYS温度—结构耦合场模块进行了开发,形成了岩土工程有效应力计算模块。数值实验表明,这种方法具有较高的计算精度和良好的计算稳定性,并且能够充分利用现有程序资源,具有较高的工程应用价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号