首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15820篇
  免费   3310篇
  国内免费   4223篇
测绘学   2393篇
大气科学   1746篇
地球物理   4772篇
地质学   9148篇
海洋学   2335篇
天文学   297篇
综合类   1268篇
自然地理   1394篇
  2024年   46篇
  2023年   161篇
  2022年   419篇
  2021年   589篇
  2020年   632篇
  2019年   873篇
  2018年   649篇
  2017年   779篇
  2016年   786篇
  2015年   905篇
  2014年   1154篇
  2013年   1053篇
  2012年   1163篇
  2011年   1203篇
  2010年   1051篇
  2009年   1085篇
  2008年   1028篇
  2007年   1175篇
  2006年   1136篇
  2005年   979篇
  2004年   903篇
  2003年   762篇
  2002年   601篇
  2001年   525篇
  2000年   516篇
  1999年   481篇
  1998年   441篇
  1997年   394篇
  1996年   337篇
  1995年   285篇
  1994年   286篇
  1993年   204篇
  1992年   193篇
  1991年   120篇
  1990年   97篇
  1989年   126篇
  1988年   76篇
  1987年   53篇
  1986年   27篇
  1985年   19篇
  1984年   6篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1972年   1篇
  1954年   13篇
排序方式: 共有10000条查询结果,搜索用时 84 毫秒
611.
Actual pumping tests may involve continuously decreasing rates over a certain period of time, and the hydraulic conductivity (K) and specific storage (Ss) of the tested confined aquifer cannot be interpreted from the classical constant‐rate test model. In this study, we revisit the aquifer drawdown characteristics of a pumping test with an exponentially decreasing rate using the dimensionless analytical solution for such a variable‐rate model. The drawdown may decrease with time for a short period of time at intermediate pumping times for such pumping tests. A larger ratio of initial to final pumping rate and a smaller radial distance of the observation well will enhance the decreasing feature. A larger decay constant results in an earlier decrease, but it weakens the extent of such a decrease. Based on the proposed dimensionless transformation, we have proposed two graphical methods for estimating K and Ss of the tested aquifer. The first is a new type curve method that does not employ the well function as commonly done in standard type curve analysis. Another is a new analytic method that takes advantage of the decreasing features of aquifer drawdown during the intermediate pumping stage. We have demonstrated the applicability and robustness of the two new graphical methods for aquifer characterization through a synthetic pumping test.  相似文献   
612.
This paper presents a dynamic fully coupled formulation for saturated and unsaturated soils that undergo large deformations based on material point method. Governing equations are applied to porous material while considering it as a continuum in which the pores of the solid skeleton are filled with water and air. The accuracy of the developed method is tested with available experimental and numerical results. The developed method has been applied to investigate the failure and post‐failure behaviour of rapid landslides in unsaturated slopes subjected to rainfall infiltration using two different bedrock geometries that lie below the top soil. The models show different failure and post‐failure mechanisms depending on the bedrock geometry and highlight the negative effects of continuous rain infiltrations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
613.
An effective approach to modeling the geomechanical behavior of the network and its permeability variation is to use a poroelastic displacement discontinuity method (DDM). However, the approach becomes rather computationally intensive for an extensive system of cracks, particularly when considering coupled diffusion/deformation processes. This is because of additional unknowns and the need for time‐marching schemes for the numerical integration. The Fast Multipole Method (FMM) is a technique that can accelerate the solution of large fracture problems with linear complexity with the number of unknowns both in memory and CPU time. Previous works combining DDM and FMM for large‐scale problems have accounted only for elastic rocks, neglecting the fluid leak‐off from the fractures into the matrix and its influence on pore pressure and stress field. In this work we develop an efficient geomechanical model for large‐scale natural fracture networks in poroelastic reservoirs with fracture flow in response to injection and production operations. Accuracy and computational performance of the proposed method with those of conventional poroelastic DDM are compared through several case studies involving up to several tens of thousands of boundary elements. The results show the effectiveness of the FMM approach to successfully evaluate field‐scale problems for the design of exploitation strategies in unconventional geothermal and petroleum reservoirs. An example considering faults reveals the impact of reservoir compartmentalization because of sealing faults for both geomechanical and flow variables under elastic and poroelastic rocks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
614.
This paper focuses on the efficiency of finite discrete element method (FDEM) algorithmic procedures in massive computers and analyzes the time-consuming part of contact detection and interaction computations in the numerical solution. A detailed operable GPU parallel procedure was designed for the element node force calculation, contact detection, and contact interaction with thread allocation and data access based on the CUDA computing. The emphasis is on the parallel optimization of time-consuming contact detection based on load balance and GPU architecture. A CUDA FDEM parallel program was developed with the overall speedup ratio over 53 times after the fracture from the efficiency and fidelity performance test of models of in situ stress, UCS, and BD simulations in Intel i7-7700K CPU and the NVIDIA TITAN Z GPU. The CUDA FDEM parallel computing improves the computational efficiency significantly compared with the CPU-based ones with the same reliability, providing conditions for achieving larger-scale simulations of fracture.  相似文献   
615.
Interest in the mechanics of landslides has led to renewed evaluation of the infinite slope equations, and the need for a more general framework for estimating the factor of safety of long and infinite slopes involving non‐homogeneous soil profiles. The paper describes finite element methods that demonstrate the potential for predicting failure in long slope profiles where the critical mechanism is not necessarily at the base of the soil layer. The influence of slope angle is also examined in long slopes, leading to some counter‐intuitive conclusions about the impact of slope steepness on the factor of safety. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
616.
617.
Slope stability optimization, in the presence of a band of a weak layer between two strong layers, is accounted for in complicated geotechnical problems. Classical optimization algorithms are not suitable for solving such problems as they need a proper preliminary solution to converge to a valid result. Therefore, it is necessary to find a proper algorithm which is capable of finding the best global solution. Recently a lot of metaheuristic algorithms have been proposed which are able to evade local minima effectively. In this study four evolutionary algorithms, including well‐known and recent ones, such as genetic algorithm, differential evolution, evolutionary strategy and biogeography‐based optimization (BBO), are applied in slope stability analysis and their efficiencies are explored by three benchmark case studies. Result show BBO is the most efficient among these evolutionary algorithms and other proposed algorithms applied to this problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
618.
In this paper, the numerical manifold method (NMM) is extended to study wave propagation across rock masses. First, improvements to the system equations, contact treatment, and boundary conditions of the NMM are performed, where new system equations are derived based on the Newmark assumption of the space–time relationship, the edge‐to‐edge contact treatment is further developed for the NMM to handle stress wave propagation across discontinuities, and the viscous non‐reflection boundary condition is derived based on the energy minimisation principle. After the modification, numerical comparisons between the original and improved NMM are presented. The results show that the original system equations result in artificial numerical damping, which can be overcome by the Newmark system equations. Meanwhile, the original contact scheme suffers some calculation problems when modelling stress wave propagation across a discontinuity, which can be solved by the proposed edge‐to‐edge contact scheme. Subsequently, the influence of the mesh size and time step on the improved NMM for stress wave propagation is studied. Finally, 2D wave propagation is modelled, and the model's results are in good agreement with the analytical solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
619.
The soil conservation service (now Natural Resources Conservation Service) Curve Number (SCS-CN), one of the most commonly used methods for surface runoff prediction. The runoff calculated by this method was very sensitive to CN values. In this study, CN values were calculated by both arithmetic mean (CN_C) and least square fit method (CN_F) using observed rainfall-runoff data from 43 sites in the Loess Plateau region, which are considerably different from the CN2 values obtained from the USDA-SCS handbook table (CN_T). The results showed that using CN_C instead of CN_T for each watershed produce little improvement, while replacing CN_T with CN_F improves the performance of the original SCS-CN method, but still performs poorly in most study sites. This is mainly due to the SCS-CN method using a constant CN value and discounting of the temporal variation in rainfall-runoff process. Therefore, three factors—soil moisture, rainfall depth and intensity—affecting the surface runoff variability are considered to reflect the variation of CN in each watershed, and a new CN value was developed. The reliability of the proposed method was tested with data from 38 watersheds, and then applied to the remaining five typical watersheds using the optimized parameters. The results indicated that the proposed method, which boosted the model efficiencies to 81.83% and 74.23% during calibration and validation cases, respectively, performed better than the original SCS-CN and the Shi and Wang (2020b) method, a modified SCS-CN method based on tabulated CN value. Thus, the proposed method incorporating the influence of the temporal variability of soil moisture, rainfall depth, and intensity factors suggests an accurate runoff prediction for general applications under different hydrological and climatic conditions on the Loess Plateau region.  相似文献   
620.
The present paper focuses on selected plasticity and damage‐plasticity models for describing the 3D material behavior of concrete. In particular, a plasticity model and a damage‐plasticity model are reviewed and evaluated. Based on the results of the evaluation, enhancements are proposed, aiming at improving the correspondence between predicted and observed material behavior and aiming at implementing a robust and efficient stress update algorithm in a finite element program for performing large‐scale 3D numerical simulations of concrete structures. The capabilities of the concrete models are demonstrated by 3D numerical simulations of benchmark tests with combined bending and torsional loading and combined compression and shear loading and by a large‐scale 3D finite element analysis of a model test of a concrete arch dam. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号