首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   12篇
  国内免费   2篇
大气科学   1篇
地球物理   53篇
地质学   1篇
海洋学   1篇
天文学   64篇
综合类   1篇
自然地理   5篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2013年   2篇
  2012年   1篇
  2011年   6篇
  2010年   11篇
  2009年   4篇
  2008年   7篇
  2007年   9篇
  2006年   8篇
  2005年   21篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2001年   6篇
  2000年   6篇
  1999年   9篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   2篇
  1989年   3篇
  1988年   1篇
  1980年   1篇
排序方式: 共有126条查询结果,搜索用时 843 毫秒
81.
电离层电导对地球磁层顶和舷激波尺度的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
本文在如下假定下分析电离层电导对地球磁层顶和舷激波尺度的影响:(1)对电离层采用球壳近似,Pedersen电导ΣP均匀,Hall电导为零;(2)地磁偶极矩处于正南方向,行星际磁场(IMF)只有南向分量(Bz<0).磁层顶和舷激波的尺度分别由它们与GSE坐标系三个轴的交点,即日下点、晨昏侧翼点和南北顶点的地心距离表征.对给定的太阳风条件、Bz和ΣP,通过三维全球MHD模拟获得系统的准定态.结果表明,在大约1~5 S范围内,ΣP值显著影响磁层顶和舷激波的尺度,而在该范围之外则几乎没有影响.随着ΣP的增加,磁层顶和舷激波整体向外扩张,前者的扩张程度低于后者,以至磁鞘区的范围扩大.磁层顶的侧翼点的位置随ΣP的变化与Bz的幅度有关:在弱南向IMF情况下磁层顶的侧翼点随ΣP的增加向内移动,而在强南向IMF情况下则向外移动.上述结果表明,在构建磁层顶和舷激波的经验模型时,有必要计入电离层电导的影响.  相似文献   
82.
The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect to variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa ( [Cassidy et al., 2007] and [Shematovich et al., 2005]). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions). Non-thermal distributions of upstream plasma will be addressed in future work. Photoionization, electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider two models for background plasma: (a) with O++ ions; (b) with O++ and S++ ions. The majority of O2 atmosphere is thermal with an extended cold population (Cassidy et al., 2007). A few first simulations already include an induced magnetic dipole; however, several important effects of induced magnetic fields arising from oceanic shell conductivity will be addressed in later work.  相似文献   
83.
地震电磁卫星监测输电线谐波辐射研究综述   总被引:3,自引:0,他引:3       下载免费PDF全文
吴静  付静静 《地震学报》2011,33(6):828-836
输电线谐波辐射已成为近地空间环境的一种人为污染源.介绍了磁层中输电线谐波辐射现象的研究历史与现状,涉及到与其相关的地基观测和天基观测结果,以及对其形成机理所开展的定性和定量研究等.特别介绍了近年来利用DEMETER地震电磁卫星观测到的输电线谐波辐射现象.根据现有的研究结果,提出一些尚未解决的问题.随着我国电网的发展,以...  相似文献   
84.
空间尘埃动力学的研究动向   总被引:2,自引:0,他引:2  
李中元 《天文学进展》2001,19(2):161-166
讨论了空间尘埃动力学的特性,特别是空间尘埃等离子体的充电,波动和不稳定性现象以及它们在太阳系中的一系列表现。  相似文献   
85.
In this paper the low-frequency ideal MHD (magnetohydrodynamical) perturbations in the inner magnetosphere of the Earth are studied. The set of partial differential equations obtained from the MHD equations in the ballooning approximation and the dipole model of the geomagnetic field is used for this purpose. These equations describe both small-scale and large-scale perturbations in the magnetospheric plasmas. In the “cold” plasma approximation the obtained equations describe poloidal and toroidal standing Alfvén modes. The account of plasma pressure leads to the appearance of an additional type of oscillations—the slow magnetosonic modes. The stability of the magnetospheric plasma with respect to the ballooning perturbations was analyzed. We describe the ballooning perturbations taking into account a coupling between the poloidal Alfvén modes and the slow magnetosonic modes.  相似文献   
86.
In this third paper in a series presenting observations by the Cassini Ultraviolet Imaging Spectrometer (UVIS) of the Io plasma torus, we show remarkable, though subtle, spatio-temporal variations in torus properties. The Io torus is found to exhibit significant, near-sinusoidal variations in ion composition as a function of azimuthal position. The azimuthal variation in composition is such that the mixing ratio of S II is strongly correlated with the mixing ratio of S III and the equatorial electron density and strongly anti-correlated with the mixing ratios of both S IV and O II and the equatorial electron temperature. Surprisingly, the azimuthal variation in ion composition is observed to have a period of 10.07 h—1.5% longer than the System III rotation period of Jupiter, yet 1.3% shorter than the System IV period defined by [Brown, M.E., 1995. J. Geophys. Res. 100, 21683-21696]. Although the amplitude of the azimuthal variation of S III and O II remained in the range of 2-5%, the amplitude of the S II and S IV compositional variation ranged between 5 and 25% during the UVIS observations. Furthermore, the amplitude of the azimuthal variations of S II and S IV appears to be modulated by its location in System III longitude, such that when the region of maximum S II mixing ratio (minimum S IV mixing ratio) is aligned with a System III longitude of ∼200°±15°, the amplitude is a factor of ∼4 greater than when the variation is anti-aligned. This behavior can explain numerous, often apparently contradictory, observations of variations in the properties of the Io plasma torus with the System III and System IV coordinate systems.  相似文献   
87.
Goertz and Morfill [Goertz, C.K., Morfill, G., 1988. Icarus 53, 219-229] propose that spokes on Saturn's rings form under radially moving plasma clouds produced by meteoroid impacts. We demonstrate that the speed at which a plasma cloud can move relative to the ring material is bounded from above by the difference between the Keplerian and corotation velocities. The radial orientation of new spokes requires radial speeds that are at least an order of magnitude larger than this upper limit, thus the model advanced by Goertz and Morfill fails to make radial spokes.  相似文献   
88.
An experimental simulation of planetary magnetospheres is being developed to investigate the formation of collisionless shocks and their effects. Two experimental situations are considered. In both, the solar wind is simulated by laser ablation plasmas. In one case, the “solar wind” flows across the magnetic field of a high-current discharge. In the other, a transverse magnetic field is embedded in the plasma flow, which interacts with a conductive obstacle. The ablation plasma is created using the “Tomcat” laser, currently emitting 5 J in a 6 ns pulse at 1 μm wavelength and irradiance above 1013 W/cm2. The “Zebra” z-pinch generator, with load current up to 1 MA and voltage up to 3.5 MV produces the magnetic fields. Hydrodynamic modeling is used to estimate the plasma parameters achievable at the front of the plasma flow and to optimize the experiment design. Particle-in-cell simulations reveal details of the interaction of the “solar wind” with an external magnetic field, including flow collimation and heating effects at the stopping point. Hybrid simulations show the formation of a bow shock at the interaction of a magnetized plasma flow with a conductor. The plasma density and the embedded field have characteristic spatial modulations in the shock region, with abrupt jumps and fine structure on the skin depth scale.  相似文献   
89.
During the Cassini spacecraft's flyby of Jupiter (October, 2000-March, 2001), the Ultraviolet Imaging Spectrograph (UVIS) produced an extensive dataset consisting of 3349 spectrally dispersed images of the Io plasma torus. Here we present an example of the raw data and representative EUV spectra (561-1181 Å) of the torus, obtained on October 1, 2000 and November 14, 2000. For most of the flyby period, the entire Io torus fit within the UVIS field-of-view, enabling the measurement of the total power radiated from the torus in the extreme ultraviolet. A typical value for the total power radiated in the wavelength range of 580-1181 Å is 1.7×1012 W, with observed variations of up to 25%. Several brightening events were observed. These events lasted for roughly 20 hours, during which time the emitted power increased rapidly by ∼20% before slowly returning to the pre-event level. Observed variations in the relative intensities of torus spectral features provide strong evidence for compositional changes in the torus plasma with time. Spatial profiles of the EUV emission show no evidence for a sharply peaked “ribbon” feature. The ratio of the brightness of the dusk ansa to the brightness of the dawn ansa is observed to be highly variable, with an average value of 1.30. Weak longitudinal variations in the brightness of the torus ansae were observed at the 2% level.  相似文献   
90.
We present results from a theoretical model which has been used to investigate the modulation of the magnetosphere-ionosphere coupling currents in the Jovian middle magnetosphere by solar wind-induced compressions and expansions of the magnetosphere. We consider an initial system in which the current sheet field lines extend to 50RJ in the equatorial plane, and where the iogenic plasma in the current sheet undergoes steady outward radial diffusion under the influence of the ionospheric torque which tends to maintain corotation with the planet. We show using typical Jovian parameters that the upward-directed field-aligned currents flowing throughout the middle magnetosphere region in this system peak at values requiring the existence of significant field-aligned voltages to drive them, resulting in large precipitating energy fluxes of accelerated electrons and bright ‘main oval’ UV auroras. We then consider the changes in these parameters which take place due to sudden expansions or compressions of the magnetosphere, resulting from changes in the solar wind dynamic pressure. Two cases are considered and compared, these being first the initial response of the system to the change, determined approximately from conservation of angular momentum of the radially displaced plasma and frozen-in field lines, and second the subsequent steady state of steady outward radial diffusion applied to the compressed or expanded system. We show that moderate inward compressions of the outer boundary of the current sheet field lines, e.g. from 50 to 40RJ, are effective in significantly reducing the coupling currents and precipitation in the initial state, the latter then recovering, but only partly so, during the evolution to the steady state. Strong inward compressions, e.g. to 30RJ cause significant super-corotation of the plasma and a reversal in sense of the current system in the initial state, such that bright auroras may then be formed poleward of the usual ‘main auroral oval’ due to the ‘return’ currents. The sense of the currents subsequently reverts back to the usual direction as steady-state conditions are restored, but they are weak, and so is the consequent electron precipitation. For outward expansions of the current sheet, however, the field-aligned currents and electron precipitation are strongly enhanced, particularly at the poleward border mapping to the outer weak field region of the current sheet. In this case there is little evolution of the parameters between the initial expansion and the subsequent steady state. Overall, the results suggest that the Jovian middle magnetosphere coupling currents and resulting ‘main oval’ auroral acceleration and precipitation will be strongly modulated by the solar wind dynamic pressure in the sense of anti-correlation, through the resulting compressions and expansions in the size of the magnetosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号