首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   12篇
  国内免费   2篇
大气科学   1篇
地球物理   53篇
地质学   1篇
海洋学   1篇
天文学   64篇
综合类   1篇
自然地理   5篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2013年   2篇
  2012年   1篇
  2011年   6篇
  2010年   11篇
  2009年   4篇
  2008年   7篇
  2007年   9篇
  2006年   8篇
  2005年   21篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2001年   6篇
  2000年   6篇
  1999年   9篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   2篇
  1989年   3篇
  1988年   1篇
  1980年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
51.
A.J. Steffl  P.A. Delamere 《Icarus》2008,194(1):153-165
In this fourth paper in a series, we present a model of the remarkable temporal and azimuthal variability of the Io plasma torus observed during the Cassini encounter with Jupiter. Over a period of three months, the Cassini Ultraviolet Imaging Spectrograph (UVIS) observed a dramatic variation in the average torus composition. Superimposed on this long-term variation, is a 10.07-h periodicity caused by an azimuthal variation in plasma composition subcorotating relative to System III longitude. Quite surprisingly, the amplitude of the azimuthal variation appears to be modulated at the beat frequency between the System III period and the observed 10.07-h period. Previously, we have successfully modeled the months-long compositional change by supposing a factor of three increase in the amount of material supplied to Io's extended neutral clouds. Here, we extend our torus chemistry model to include an azimuthal dimension. We postulate the existence of two azimuthal variations in the number of superthermal electrons in the torus: a primary variation that subcorotates with a period of 10.07 h and a secondary variation that remains fixed in System III longitude. Using these two hot electron variations, our model can reproduce the observed temporal and azimuthal variations observed by Cassini UVIS.  相似文献   
52.
53.
The profound impact of solar irradiance variations on the decadal variability of Earth' s climate has been investigated by previous studies.However,it remains a challenge to quantify the energetic particle precipitation(EPP) influence on the surface climate,which is an emerging research topic.The solar wind is a source of magnetospheric EPP,and the total energy input from the solar wind into Earth' s magnetosphere(E_(in)) shows remarkable interdecadal and interannual variability.B ased on the new E_(in) index,this study reveals a significant interannual relationship between the annual mean E_(in)and Eurasian cold extremes in the subsequent winter.Less frequent cold events are observed over Eurasia(primarily north of 50°N) following the higher-than-normal E_(in) activity in the previous year,accompanied by more frequent cold events over northern Africa,and vice versa.This response pattern shows great resemblance to the first empirical orthogonal function of the variability of cold extremes over Eurasia,with a spatial correlation coefficient of 0.79.The pronounced intensification of the positive North Atlantic Oscillation events and poleward shift of the North Atlantic storm track associated with the anomalously higher E_(in) favor the anomalous extreme atmospheric circulation events,and thus less frequent extreme cold temperatures over northern Eurasia on the interannual time scale.It is further hypothesized that the wave-mean flow interaction in the stratosphere and troposphere is favorable for the connection of E_(in) signals to tropospheric circulation and climate in the following winter.  相似文献   
54.
综合分析EISCAT雷达与卫星当地测量数据,并利用磁层磁场模式对磁力线进行追踪,研究了发生在极光椭圆朝极盖边界附近电离层中,一例反常的背离太阳流动的强等离子体对流事件,及相关的太阳风-磁层-电离层耦合过程.结果表明,磁暴期间IMFBz指向南时观测到这一反常高速对流,及其相应的等离子体性态特征,很可能是向阳侧磁层顶磁重联过程在电离层中的印记.  相似文献   
55.
Dramatic changes in the brightness and shape of Jupiter's extended sodium nebula are found to be correlated with the infrared emission brightness of Io. Previous imaging and modeling studies have shown that varying appearances of the nebula correspond to changes in the rate and the type of loss mechanism for atmospheric escape from Io. Similarly, previous IR observational studies have assumed that enhancements in infrared emissions from Io correspond to increased levels of volcanic (lava flow) activity. In linking these processes observationally and statistically, we conclude that silicate volcanism on Io controls both the rate and the means by which sodium escapes from Io's atmosphere. During active periods, molecules containing sodium become an important transient in Io's upper atmosphere, and subsequent photochemistry and molecular-ion driven dynamics enhance the high speed sodium population, leading to the brightest nebulas observed. This is not the case during volcanically quiet times when omni-present atmospheric sputtering ejects sodium to form a modest, base-level nebula. Sodium's role as a “trace gas” of the more abundant species of sulfur (S) and oxygen (O) is less certain during volcanic episodes. While we suggest that volcanism must also affect the escape rates of S and O, and consequently their extended neutral clouds, the different roles played by lava and plume sources for non-sodium species are far too uncertain to make definitive comparisons at this time.  相似文献   
56.
Low frequency stochastic variations of the geomagnetic AE-index characterized by 1/fb-like power spectrum (where f is a frequency) are studied. Based on the analysis of experimental data we show that the Bz-component of IMF, velocity of solar wind plasma, and the coupling function of Akasofu are insufficient factors to explain these behaviors of the AE-index together with the 1/fb fluctuations of geomagnetic intensity. The effect of self-organized criticality (SOC) is proposed as an internal mechanism to generate 1/fb fluctuations in the magnetosphere. It is suggested that localized spatially current instabilities, developing in the magnetospheric tail at the initial substorm phase can be considered as SOC avalanches or dynamic clusters, superposition of which leads to the 1/fb fluctuations of macroscopic characteristics in the system. Using the sandpile model of SOC, we undertake numerical modeling of space-localized and global disturbances of magnetospheric current layer. Qualitative conformity between the disturbed dynamics of self-organized critical state of the model and the main phases of real magnetospheric substorm development is demonstrated. It is also shown that power spectrum of sandpile model fluctuations controlled by real solar wind parameters reproduces all distinctive spectral features of the AE fluctuations.  相似文献   
57.
Ultra low frequency (ULF) waves incident on the Earth are produced by processes in the magnetosphere and solar wind. These processes produce a wide variety of ULF hydromagnetic wave types that are classified on the ground as either Pi or Pc pulsations (irregular or continuous). Waves of different frequencies and polarizations originate in different regions of the magnetosphere. The location of the projections of these regions onto the Earth depends on the solar wind dynamic pressure and magnetic field. The occurrence of various waves also depends on conditions in the solar wind and in the magnetosphere. Changes in orientation of the interplanetary magnetic field or an increase in solar wind velocity can have dramatic effects on the type of waves seen at a particular location on the Earth. Similarly, the occurrence of a magnetospheric substorm or magnetic storm will affect which waves are seen. The magnetosphere is a resonant cavity and waveguide for waves that either originate within or propagate through the system. These cavities respond to broadband sources by resonating at discrete frequencies. These cavity modes couple to field line resonances that drive currents in the ionosphere. These currents reradiate the energy as electromagnetic waves that propagate to the ground. Because these ionospheric currents are localized in latitude there are very rapid variations in wave phase at the Earth’s surface. Thus it is almost never correct to assume that plane ULF waves are incident on the Earth from outer space. The properties of ULF waves seen at the ground contain information about the processes that generate them and the regions through which they have propagated. The properties also depend on the conductivity of the Earth underneath the observer. Information about the state of the solar wind and the magnetosphere distributed by the NOAA Space Disturbance Forecast Center can be used to help predict when certain types and frequencies of waves will be observed. The study of ULF waves is a very active field of space research and much has yet to be learned about the processes that generate these waves.  相似文献   
58.
The study of Earth's space environment, or geospace, has made considerable advances in the 50 years since the start of the Space Age, which was coincident with the 1957 International Geophysical Year. Space probes have visited most parts of that environment providing a wealth of in situ and remote-sensing measurements. Equally important in contributing to the advances made over the last 50 years have been the many instruments, which have been distributed on the surface of the Earth. In particular, the development of networks for the specific purpose of studying the dynamics of geospace, energy redistribution within geospace, and fundamental physical processes in plasmas has been hugely successful. Ground-based instruments remotely sense processes and phenomena in geospace and since this volume is large, networks of such instruments are the best way of measuring the global state of geospace and its dynamics. In this paper, I describe ways in which the Super Dual Auroral Radar Network (SuperDARN) has contributed to the success of ground-based networks, concentrating on science results, which have required the network approach so well demonstrated by SuperDARN. Such science includes the remote sensing of the reconnection electric field and its dynamics, the study of processes where asymmetries in the geospace system are induced by the external driving forces, and MHD waves, which play an important role in the transfer of energy and momentum within geospace. In addition, I discuss open science questions, which can be addressed by SuperDARN in the future, in particular in conjunction with current and future space missions as well as other ground-based networks.  相似文献   
59.
We employ Mariner 10 measurements of the interplanetary magnetic field in the vicinity of Mercury to estimate the rate of magnetic reconnection between the interplanetary magnetic field and the Hermean magnetosphere. We derive a time-series of the open magnetic flux in Mercury's magnetosphere, from which we can deduce the length of the magnetotail. The length of the magnetotail is shown to be highly variable, with open field lines stretching between 15RH and 850RH downstream of the planet (median 150RH). Scaling laws allow the tail length at perihelion to be deduced from the aphelion Mariner 10 observations.  相似文献   
60.
We present new results of Cassini's T9 flyby with complementary observations from T18. Based on Cassini plasma spectrometer (CAPS) and Cassini magnetometer (MAG), compositional evidence shows the upstream flow for both T9 and T18 appears composed of light ions (H+ and H2+), with external pressures ∼30 times lower than that for the earlier TA flyby where heavy ions dominated the magnetospheric plasma. When describing the plasma heating and sputtering of Titan's atmosphere, T9 and T18 can be considered interactions of low magnetospheric energy input. On the other hand, T5, when heavy ion fluxes are observed to be higher than typical (i.e., TA), represents the limiting case of high magnetospheric energy input to Titan's upper atmosphere. Anisotropy estimates of the upstream flow are 1<T/T<3 and the flow is perpendicular to B, indicative of local picked up ions from Titan's H and H2 coronae extending to Titan's Hill sphere radius. Beyond this distance the corona forms a neutral torus that surrounds Saturn. The T9 flyby unexpectedly resulted in observation of two “wake” crossings referred to as Events 1 and 2. Event 2 was evidently caused by draped magnetosphere field lines, which are scavenging pickup ions from Titan's induced magnetopause boundary with outward flux ∼2×106 ions/cm2/s. The composition of this out flow is dominated by H2+ and H+ ions. Ionospheric flow away from Titan with ion flux ∼7×106 ion/cm2/s is observed for Event 1. In between Events 1 and 2 are high energy field aligned flows of magnetosphere protons that may have been accelerated by the convective electric field across Titan's topside ionosphere. T18 observations are much closer to Titan than T9, allowing one to probe this type of interaction down to altitudes ∼950 km. Comparisons with previously reported hybrid simulations are made.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号