首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   12篇
  国内免费   2篇
大气科学   1篇
地球物理   53篇
地质学   1篇
海洋学   1篇
天文学   64篇
综合类   1篇
自然地理   5篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2013年   2篇
  2012年   1篇
  2011年   6篇
  2010年   11篇
  2009年   4篇
  2008年   7篇
  2007年   9篇
  2006年   8篇
  2005年   21篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2001年   6篇
  2000年   6篇
  1999年   9篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   2篇
  1989年   3篇
  1988年   1篇
  1980年   1篇
排序方式: 共有126条查询结果,搜索用时 171 毫秒
121.
We have analyzed the Cassini Ultraviolet Imaging Spectrometer (UVIS) observations of the Jupiter aurora with an auroral atmosphere two-stream electron transport code. The observations of Jupiter by UVIS took place during the Cassini Campaign. The Cassini Campaign included support spectral and imaging observations by the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS). A major result for the UVIS observations was the identification of a large color variation between the far ultraviolet (FUV: 1100-1700 Å) and extreme ultraviolet (EUV: 800-1100 Å) spectral regions. This change probably occurs because of a large variation in the ratio of the soft electron flux (10-3000 eV) responsible for the EUV aurora to the hard electron flux (∼15-22 keV) responsible for the FUV aurora. On the basis of this result a new color ratio for integrated intensities for EUV and FUV was defined (4πI1550-1620 Å/4πI1030-1150 Å) which varied by approximately a factor of 6. The FUV color ratio (4πI1550-1620 Å/4πI1230-1300 Å) was more stable with a variation of less than 50% for the observations studied. The medium resolution (0.9 Å FWHM, G140M grating) FUV observations (1295-1345 Å and 1495-1540 Å) by STIS on 13 January 2001, on the other hand, were analyzed by a spectral modeling technique using a recently developed high-spectral resolution model for the electron-excited H2 rotational lines. The STIS FUV data were analyzed with a model that considered the Lyman band spectrum (B ) as composed of an allowed direct excitation component (X ) and an optically forbidden component (X followed by the cascade transition ). The medium-resolution spectral regions for the Jupiter aurora were carefully chosen to emphasize the cascade component. The ratio of the two components is a direct measurement of the mean secondary electron energy of the aurora. The mean secondary electron energy of the aurora varies between 50 and 200 eV for the polar cap, limb and auroral oval observations. We examine a long time base of Galileo Ultraviolet Spectrometer color ratios from the standard mission (1996-1998) and compare them to Cassini UVIS, HST, and International Ultraviolet Explorer (IUE) observations.  相似文献   
122.
We present data from conjugate SuperDARN radars describing the high-latitude ionospheres response to changes in the direction of IMF By during a period of steady IMF Bz southward and Bx positive. During this interval, the radars were operating in a special mode which gave high-time resolution data (30 s sampling period) on three adjacent beams with a full scan every 3 min. The location of the radars around magnetic local noon at the time of the event allowed detailed observations of the variations in the ionospheric convection patterns close to the cusp region as IMF By varied. A significant time delay was observed in the ionospheric response to the IMF By changes between the two hemispheres. This is explained as being partially a consequence of the location of the dominant merging region on the magnetopause, which is 8/12RE closer to the northern ionosphere than to the southern ionosphere (along the magnetic field line) due to the dipole tilt of the magnetosphere and the orientation of the IMF. This interpretation supports the anti-parallel merging hypothesis and highlights the importance of the IMF Bx component in solar wind-magnetosphere coupling.  相似文献   
123.
Central polar cap convection changes associated with southward turnings of the Interplanetary Magnetic Field (IMF) are studied using a chain of Canadian Advanced Digital Ionosondes (CADI) in the northern polar cap. A study of 32 short duration (1 h) southward IMF transition events found a three stage response: (1) initial response to a southward transition is near simultaneous for the entire polar cap; (2) the peak of the convection speed (attributed to the maximum merging electric field) propagates poleward from the ionospheric footprint of the merging region; and (3) if the change in IMF is rapid enough, then a step in convection appears to start at the cusp and then propagates antisunward over the polar cap with the velocity of the maximum convection. On the nightside, a substorm onset is observed at about the time when the step increase in convection (associated with the rapid transition of IMF) arrives at the polar cap boundary.  相似文献   
124.
The Sun is enveloped by a hot, tenuous million-degree corona that expands to create a continuous solar wind that sweeps past all the planets and fills the heliosphere. The solar wind is modulated by strong gusts that are initiated by powerful explosions on the Sun, including solar flares and coronal mass ejections. This dynamic, invisible outer atmosphere of the Sun is currently under observation with the soft X-ray telescope aboard the Yohkoh spacecraft, whose results are presented. We also show observations from the Ulysses spacecraft that is now passing over the solar pole, sampling the solar wind in this region for the first time. Two other spacecraft, Voyager 1 and 2, have recently detected the outer edge of the invisible heliosphere, roughly halfway to the nearest star. Magnetic solar activity, the total radiative output from the Sun, and the Earth's mean global surface temperature all vary with the 11-year sunspot cycle in which the total number of sunspots varies from a maximum to a minimum and back to a maximum again in about 11 years. The terrestrial magnetic field hollows out a protective magnetic cavity, called the magnetosphere, within the solar wind. This protection is incomplete, however, so the Sun feeds an unseen world of high-speed particles and magnetic fields that encircle the Earth in space. These particles endanger spacecraft and astronauts, and also produce terrestrial aurorae. An international flotilla of spacecraft is now sampling the weak points in this magnetic defense. Similar spacecraft have also discovered a new radiation belt, in addition to the familiar Van Allen belts, except fed by interstellar ions instead of electrons and protons from the Sun.  相似文献   
125.
We use the fully coupled, three-dimensional, global circulation Jovian Ionospheric Model (JIM) to calculate the coupling between ions in the jovian auroral ovals and the co-existing neutral atmosphere. The model shows that ions subject to drift motion around the auroral oval, as a result of the E×B coupling between a meridional, equatorward electric field and the jovian magnetic field, generate neutral winds in the planetary frame of reference. Unconstrained by the magnetic field, these neutral winds have a greater latitudinal extent than the corresponding ion drifts. Values of the coupling coefficient, k(h), are presented as a function of altitude and cross-auroral electric field strength, for different incoming electron fluxes and energies. The results show that, with ion velocities of several hundred metres per second to over 1 km s−1, k(h) can attain values greater than 0.5 at the ion production peak. This parameter is key to calculating the effective conductivities required to model magnetosphere-ionosphere coupling correctly. The extent to which angular momentum (and therefore energy) is transported vertically in JIM is much more limited than earlier, one-dimensional, studies have predicted.  相似文献   
126.
Energetic electrons (e.g., 50 keV) travel along field lines with a high speed of around 20 REs−1. These swift electrons trace out field lines in the magnetosphere in a rather short time, and therefore can provide nearly instantaneous information about the changes in the field configuration in regions of geospace. The energetic electrons in the high latitude boundary regions (including the cusp) have been examined in detail by using Cluster/RAPID data for four consecutive high latitude/cusp crossings between 16 March and 19 March 2001. Energetic electrons with high and stable fluxes were observed in the time interval when the IMF had a predominately positive Bz component. These electrons appeared to be associated with a lower plasma density exhibiting no obvious tailward plasma flow (<20 keV). On the other hand, no electrons or only spike-like electron events have been observed in the cusp region during southward IMF. At that time, the plasma density was as high as that in the magnetosheath and was associated with a clear tailward flow. The fact that no stable energetic electron fluxes were observed during southward IMF indicates that the cusp has an open field line geometry. The observations indicate that both the South and North high latitude magnetospheric boundary regions (including both North and South cusp) can be energetic particle trapping regions. The energetic electron observations provide new ways to investigate the dynamic cusp processes. Finally, trajectory tracing of test particles has been performed using the Tsyganenko 96 model; this demonstrates that energetic particles (both ions and electrons) may be indeed trapped in the high latitude magnetosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号