首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   688篇
  免费   112篇
  国内免费   214篇
测绘学   2篇
地球物理   147篇
地质学   637篇
海洋学   29篇
天文学   6篇
综合类   18篇
自然地理   175篇
  2024年   4篇
  2023年   13篇
  2022年   14篇
  2021年   14篇
  2020年   21篇
  2019年   25篇
  2018年   16篇
  2017年   10篇
  2016年   15篇
  2015年   12篇
  2014年   20篇
  2013年   33篇
  2012年   49篇
  2011年   27篇
  2010年   28篇
  2009年   33篇
  2008年   53篇
  2007年   75篇
  2006年   83篇
  2005年   57篇
  2004年   55篇
  2003年   41篇
  2002年   24篇
  2001年   42篇
  2000年   23篇
  1999年   37篇
  1998年   35篇
  1997年   21篇
  1996年   31篇
  1995年   26篇
  1994年   12篇
  1993年   19篇
  1992年   10篇
  1991年   9篇
  1990年   6篇
  1989年   7篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1954年   2篇
排序方式: 共有1014条查询结果,搜索用时 15 毫秒
951.
ABSTRACT

Tongling, in eastern China, is an area well-known for intra-plate adakites. Here, we present the mineral chemistry and zircon U–Pb ages for amphibole cumulate xenoliths, the mineral chemistry of amphibole megacrysts, and the whole–rock chemistry, zircon U–Pb age and Sr–Nd isotopic compositions of host gabbros from Tongling. Zircon U–Pb dating yields a crystallization age of 120.6 ± 1.2 Ma (MSWD = 4.2) for the host gabbros, which are characteristically depleted in high field strength elements (Nb, Ta, and Ti) and enriched in large ion lithophile elements (Ba and Sr), with εNd (t) of ?3.00 to ?4.52 and initial 87Sr/86Sr ratios of 0.7068–0.7072, suggesting an enriched mantle source. Parental melts, as estimated from average amphibole megacryst and cumulate compositions, have Mg# values of 26–33, are enriched in Ba, Th, U, and Nd, and depleted in Nb, Ta, Zr, Hf, and Ti, similar to 136 Ma mafic magmas in Tongling. Zircon U–Pb dating yields a crystallization age of 135.4 ± 1.0 Ma (MSWD = 1.6) for the amphibole cumulates. It is concluded that the Tongling adakitic rocks were formed by polybaric crystallization involving early high-pressure intracrustal fractional crystallization of cumulates comprising hornblende and clinopyroxene, and late low-pressure fractional crystallization of hornblende and plagioclase phenocrysts. The flat subduction of Pacific plate and its subsequent foundering during the Cretaceous may have triggered the generation of extensive adakitic magmas and lithospheric thinning in the Lower Yangtze Region.  相似文献   
952.
ABSTRACT

We report geochemical data and zircon SHRIMP U-Pb ages for Late Mesozoic granitoids from the western Zhejiang province and southern Anhui province (the WZSA region) from southeast China. In combination with published geochronological and geochemical data, the granitoids in the region can be divided into three stages: 171–141 Ma, 140–121 Ma, and 120–95 Ma. The first stage of these granitoids is mainly composed of granite porphyry and granodiorite which are similar to I-type granitoids, including having weakly negative Eu anomalies with enrichment in light rare earth elements (LREE), Rb, Th, and U. The second stage of granitoids consists of monzogranite, syenogranite, and granite with the characteristics of both A-type and I-type granitoids including strongly negative Eu anomalies; depletion of Ba, Sr, and Ti; and enrichment of K, Rb, and high field strength elements (HFSEs) (such as Th and U). The third stage of granitoids is mainly composed of granite, quartz monzonite, quartz diorite, and mafic rocks with weakly negative Eu anomalies and also enrichment in LREE, Rb, Th, U, and K. From our work, we propose a transition from compressional to extensional magmatism at ~141 Ma. Based on the geochemical characteristics of these granites and coeval mafic rocks, we propose that the formation of the A-type magmatism in the WZSA region formed as the result of lithospheric extension and asthenospheric upwelling during the Early Cretaceous.  相似文献   
953.
本文介绍了一种一维联合多种地球物理数据的概率反演方法 Lit Mod1D的基本原理及应用。该联合反演方法结合了地球物理学与岩石学的正演模拟,将岩石学、矿物物理学、地球化学、以及地球物理学等观测数据限定在一个自适应的热—动力学框架下,通过解热传导、热力学、重力势、流变学和地壳均衡等方程,获得岩石圈及上地幔深部(地表到410 km不连续面)的热、组分及地震波速度等结构。Lit Mod1D基于贝叶斯框架进行反演,使用马尔可夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)随机搜索方法,最终得到的岩石圈及上地幔深部的热—化学结构不仅能够很好的拟合各种地球物理数据,同时,由于不同的地球物理观测数据对于不同深度的组分或/和热结构异常有着不同的敏感度,因此相比于单独反演降低了反演的不确定性。我们选取了华北克拉通的阳原和狼山测点作为介绍该方法的应用实例,其中克拉通东部的阳原测点之下显示了一个热的、薄的岩石圈地幔,而西部的狼山测点则显示了一个冷的、相对较厚的岩石圈地幔,对应了华北克拉通岩石圈地幔减薄的空间变化。反演的Mg#值与相应地区的捕虏体有很好的一致性,两处均不存在亏损岩石圈地幔,说明其岩石圈地幔已被新生饱满地幔置换了。  相似文献   
954.
基性岩流变实验揭示出大陆下地壳流变的复杂性   总被引:3,自引:0,他引:3  
基性麻粒岩流变实验研究对认识大陆下地壳流变、板内构造变形和强震孕育等具有重要意义.大量基性岩流变实验数据表明,基性麻粒岩流变实验研究集中在单相矿物和两相矿物集合体,对天然基性麻粒岩流变研究很有限.基性麻粒岩流变实验结果的影响因素众多,除了实验条件(如温度、压力、应变速率)外,实验样品的矿物组分、样品颗粒粒度、微量水、熔体、矿物反应等都会影响其流变特性,这导致实验结果的复杂性.因此,根据单相或两相矿物集合体流变讨论大陆下地壳流变结构时,存在很多不确定性,不能满足下地壳流变研究的实际需求.而根据端元组分流变参数和经验方程估计由多相矿物组成的麻粒岩的流变强度,只是一种简单近似,无法完全取代麻粒岩流变实验研究.因此,开展多相矿物基性麻粒岩的流变实验,以获得更接近真实大陆下地壳流变的实验数据,并且用于定量研究下地壳流变,是大陆下地壳流变实验未来发展的方向.在基性麻粒岩流变实验研究中存在的科学问题与技术难题是多相矿物流变、高温部分熔融的影响、矿物反应-流变相互作用,这些问题都有待通过高温高压流变实验进行深入研究.  相似文献   
955.
凹山铁矿是宁芜火山盆地内重要的玢岩矿床之一.为进一步厘定该矿床的成矿年龄,分析其成矿动力学背景,本文对凹山铁矿含矿辉石闪长玢岩和磁铁矿样品进行了详细的稀土元素地球化学分析,并对辉石闪长玢岩样品进行了LA-ICP-MS锆石U-Pb年龄测定.测年结果显示凹山铁矿成矿母岩的形成时代为127.6±4.4 Ma,属早白垩世,该年龄可代表凹山铁矿床的成矿年龄.成矿岩浆源自于地幔或下地壳玄武岩;盆地岩石圈减薄诱发地幔成矿物质进入地壳,成矿时代对应岩石圈减薄的高峰期.  相似文献   
956.
The mantle xenoliths in the Quaternary ChangbaishanVolcano in southern Jilin Province contain spinel-facies lherzolites. The equilibration temperatures for these samples range from 902oC to 1064oC based on the two-pyroxene thermometer of Brey and K?hler (1990), and using the oxybarometry of Nell and Wood (1991), the oxidation state was estimated from FMQ-1.32 to -0.38 with an average value of FMQ-0.81 (n?=?8), which is comparable to that of abyssal peridotites and the asthenospheric mantle. The fO2 values of peridotites, together with their bulk rock compositions (e.g., Mg#, Al2O3, CaO, Ni, Co, Cr) and mineral compositions (e.g., Mg# of olivine and pyroxene, Cr# [=Cr/[Cr+Al]] and Mg# [=Mg/[Mg+Fe2+] of spinel), suggest that the present-day subcontinental lithospheric mantle (SCLM) beneath the Changbaishan Volcano most likely formed from an upwelling asthenosphere at some time after the late Mesozoic and has undergone a low degree of partial melting. The studied lherzolite xenoliths show low concentrations of S, Cu, and platinum group elements (PGE), which plot a flat pattern on primitive-mantle normalized diagram. Very low concentrations in our samples suggest that PGEs occur as alloys or hosted by silicate and oxide minerals. The compositions of the studied samples are similar to those of peridotite xenoliths in the Longgang volcanic field (LVF) in their mineralogy and bulk rock compositions including the abundance of chalcophile and siderophile elements. However, they are distinctly different from those of peridotite xenoliths in other areas of the North China Craton (NCC) in terms of Cu, S and PGE. Our data suggest that the SCLM underlying the northeastern part of the NCC may represent a distinct unit of the newly formed lithospheric mantle.  相似文献   
957.
The Mesozoic lithospheric mantle beneath the North China craton remains poorly constrained relative to its Palaeozoic and Cenozoic counterparts due to a lack of mantle xenoliths in volcanic rocks. Available data show that the Mesozoic lithospheric mantle was distinctive in terms of its major, trace element, and isotopic compositions. The recent discovery of mantle peridotitic xenoliths in Late Cretaceous mafic rocks in the Jiaodong region provides an opportunity to further quantify the nature and secular evolution of the Mesozoic lithospheric mantle beneath the region. These peridotitic xenoliths are all spinel-facies nodules and two groups, high-Mg# and low-Mg# types, can be distinguished based on textural and mineralogical features. High-Mg# peridotites have inequigranular textures, high Mg# (up to 92.2) in olivines, and high Cr# (up to 55) in spinels. Clinopyroxenes in the high-Mg# peridotites are generally LREE-enriched ((La/Yb)N>1) with variable REE concentrations, and have enriched Sr–Nd isotopic compositions (87Sr/86Sr = 0.7046–0.7087; 143Nd/144Nd = 0.5121–0.5126). We suggest that the high-Mg# peridotites are fragments of the Archaean and/or Proterozoic lithospheric mantle that underwent extensive interaction with both carbonatitic and silicate melts prior to or during Mesozoic time. The low-Mg# peridotites are equigranular, are typified by low Mg# ( < 90) in olivines, and by low Cr# ( < 12) in spinels. Clinopyroxenes from low-Mg# peridotites have low REE abundances (ΣREE = 12 ppm), LREE-depleted REE patterns ((La/Yb)N < 1), and depleted Sr–Nd isotopic features, in contrast to the high-Mg# peridotites. These geochemical characteristics suggest that the low-Mg# peridotites represent samples from the newly accreted lithospheric mantle. Combined with the data of mantle xenoliths from the Junan and Daxizhuang areas, a highly heterogeneous, secular evolution of the lithosphere is inferred for the region in Late Cretaceous time.  相似文献   
958.
《International Geology Review》2012,54(10):1203-1218
Ultramafic xenoliths are abundant in late Mesozoic high-Mg diorites at Laiwu, western Shandong Province; they are composed of dunite (>80 vol.%) with minor harzburgite (<10 vol.%) and olivine (Ol)-pyroxenite (<10 vol.%). We determined the abundance of siderophile and chalcophile elements of representative samples of xenoliths, and calculated oxidation conditions based on mineral chemistry. Bulk compositions of harzburgite show high Cr (2640–3430 ppm), Co (103–111 ppm), Ni (2210–2400 ppm), and high Ir-type platinum group elements (PGE) (IPGE, 14.0–17.8 ppb), with high ratios of IPGE to Pt-type PGE (PPGE, 3.1–6.3). Spinel contains moderate Cr (Cr# = 0.41–0.61). Our data suggest that the harzburgite is the residue of partial melting. The occurrence of orthopyroxene replacing Ol suggests that harzburgite was metasomatized by a Si-rich melt. Dunite contains high concentrations of Cr (> 3800 ppm), Co (>110 ppm), and Ni (>1680 ppm), and low concentrations of IPGE (<4.8 ppb), with low ratios of IPGE/PPGE (as low as 0.05), suggesting that dunite is the cumulate of a mafic melt. High Cr in chromite (Cr# > 0.7) and high Mg in Ol suggest that the parental melt was boninitic. Some Ol grains show variable, locally high Mg, up to Fo 94.3. We attribute these high values to the interaction of the Ol with abundant chromite in the cumulate. Both dunite and harzburgite indicate high log fO2 values, ranging from fayalite-magnetite-quartz (FMQ) +1.4 to +2.4. The values contrast with fO2 below that of the graphite–CO2 buffer for xenoliths in early Palaeozoic diamondiferous kimberlite pipes in the area. The data indicate a sharp increase in fO2 during Mesozoic time, likely caused by subduction of the Tethyan oceanic plate before collision with the Yangtze continent below the eastern margin of the North China craton.  相似文献   
959.
Exsolution lamellae in pyroxene and garnet porphyroblasts in pyroxenite xenoliths from the Mir, Udachnaya, and Obnazhennaya kimberlites (Siberian Craton) reveal a diverse suite of exsolved phases, including oxides (spinels, ilmenite, rutile, and chromite), pyroxene, and garnet. Textural characteristics suggest that exsolved phases progressively increased in volumetric proportions, and in some cases, the bulk xenoliths transformed from a lithology dominated by coarse grains (i.e. > 2 cm; megacrystalline) to a significantly finer-grained texture (i.e. < 1 cm).

These exsolved lamellae are the result of a complex and protracted sub solidus history following magmatic crystallization. Equilibrium pressure–temperature estimates place these xenoliths at low-to-moderate pressure–temperature conditions (690–910°C and 2.0–4.5 GPa) in the lithospheric mantle at the time of entrainment in the kimberlite. However, reconstructed compositions of initial pyroxene and garnet crystals suggest that this suite of pyroxenites formed at considerably higher temperatures and pressures that, in some instances, may have approached the majorite stability field. Pyroxenites that do not contain primary garnet may have been derived from shallower depths.

Progressive exsolution in these pyroxenites is of importance inasmuch as such processes can permit localized changes in rheological properties and may also accommodate strain within portions of lithospheric mantle. Because most xenolith studies focus on peridotites and eclogites, the pyroxenite sample suite studied in this work represents an important contribution towards a greater understanding of the Siberian lithospheric mantle.  相似文献   
960.
Post-orogenic mafic rocks from Northeast China consist of swarms of dolerite dikes. We report a new U–Pb zircon age, as well as whole-rock geochemical and Sr–Nd–Hf isotopic data. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb zircon analysis yielded an age of 210.3 ± 1.5 million years (i.e. Triassic) for these mafic dikes. Most Dalian mafic rocks exhibit low K2O + Na2O contents, and span the border between alkaline and calc-alkaline rock associations in the total alkali–silica diagram. The investigated dikes are also characterized by relatively high (87Sr/86Sr)i ratios (0.7061–0.7067) and negative ?Nd (t) (?4.7 to??4.3) and ?Hf (t) values (?4.1 to??1.1), implying that they were derived from an enriched lithospheric mantle source. The mafic dikes are characterized by relatively low MgO (4.65–5.44 wt.%), Mg# (41–44), and compatible element content [such as Cr (89.9–125 ppm) and Ni (56.7–72.2 ppm)], which are the features of an evolved mafic magma. No evidence supports the idea that the mafic rocks were affected by significant assimilation or crustal contamination during emplacement. We conclude that the dolerites formed in a post-orogenic extensional setting, related to lithospheric delamination or ‘collapse’ of the Central Asian Orogenic Belt (CAOB), also termed the Xingmeng Orogenic Belt in China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号