首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1326篇
  免费   471篇
  国内免费   1273篇
测绘学   33篇
大气科学   1923篇
地球物理   182篇
地质学   174篇
海洋学   543篇
天文学   8篇
综合类   50篇
自然地理   157篇
  2024年   17篇
  2023年   40篇
  2022年   76篇
  2021年   111篇
  2020年   134篇
  2019年   116篇
  2018年   104篇
  2017年   108篇
  2016年   84篇
  2015年   86篇
  2014年   115篇
  2013年   163篇
  2012年   143篇
  2011年   142篇
  2010年   125篇
  2009年   121篇
  2008年   119篇
  2007年   157篇
  2006年   140篇
  2005年   138篇
  2004年   93篇
  2003年   84篇
  2002年   85篇
  2001年   86篇
  2000年   69篇
  1999年   52篇
  1998年   64篇
  1997年   49篇
  1996年   56篇
  1995年   56篇
  1994年   49篇
  1993年   24篇
  1992年   23篇
  1991年   14篇
  1990年   1篇
  1989年   7篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有3070条查询结果,搜索用时 0 毫秒
111.
利用1985年1月~2009年7月月平均海表面温度(SST)和代表局地对流的对外长波辐射(OLR)资料,讨论中国南海海表面温度与局地对流之间的关系。结果显示,在气候平均意义下,南海对流增强所需的SST阈值为27℃,即当SST低于27℃时,南海OLR值高于240 W/m2,并且随SST的升高变化不大;SST超过27℃后,随着SST的升高,OLR迅速减小,对流强度不断增强。与一般热带海洋不同之处在于SST超过29.5℃后对流仍加强。冬季风阶段(10月~次年4月)SST值较低,对流受到抑制,即使在3、4月SST高于27℃时对流强度仍较弱;5月为南海夏季风爆发月,SST较4月仅升高1℃,但对流强度显著增强;夏季风阶段(6~9月)南海的高温暖水使对流在平均意义上维持高值,但对流的变化与局地SST变化之间的关系不明显。  相似文献   
112.
An ocean general circulation model (OGCM) is used to demonstrate remote effects of tropical cyclone wind (TCW) forcing in the tropical Pacific. The signature of TCW forcing is explicitly extracted using a locally weighted quadratic least=squares regression (called as LOESS) method from six-hour satellite surface wind data; the extracted TCW component can then be additionally taken into account or not in ocean modeling, allowing isolation of its effects on the ocean in a clean and clear way. In this paper, seasonally varying TCW fields in year 2008 are extracted from satellite data which are prescribed as a repeated annual cycle over the western Pacific regions off the equator (poleward of 10°N/S); two long-term OGCM experiments are performed and compared, one with the TCW forcing part included additionally and the other not. Large, persistent thermal perturbations (cooling in the mixed layer (ML) and warming in the thermocline) are induced locally in the western tropical Pacific, which are seen to spread with the mean ocean circulation pathways around the tropical basin. In particular, a remote ocean response emerges in the eastern equatorial Pacific to the prescribed off-equatorial TCW forcing, characterized by a cooling in the mixed layer and a warming in the thermocline. Heat budget analyses indicate that the vertical mixing is a dominant process responsible for the SST cooling in the eastern equatorial Pacific. Further studies are clearly needed to demonstrate the significance of these results in a coupled ocean-atmosphere modeling context.  相似文献   
113.
Hydrogeochemical based mixing models have been successfully used to investigate the composition and source identification of streamflow. The applicability of these models is limited due to the high costs associated with data collection and the hydrogeochemical analysis of water samples. Fortunately, a variety of mixing models exist, requiting different amount of data as input, and in data scarce regions it is likely that preference will be given to models with the lowest requirement of input data. An unanswered question is if models with high or low input requirement are equally accurate. To this end, the performance of two mixing models with different input requirement, the mixing model analysis (MMA) and the end-member mixing analysis (EMMA), were verified on a tropical montane headwater catchment (21.7 km2) in the Ecuadorian Andes. Nineteen hydrogeochemical tracers were measured on water samples collected weekly during 3 years in streamflow and eight potential water sources or end-members (precipitation, lake water, soil water from different horizons and springs). Results based on 6 conservative tracers, revealed that EMMA (using all tracers) and MMA (using pair-combinations out of the 6 conservative ones), identified the same end-members: rainfall, soil water and spring water., as well as, similar contribution fractions to streamflow from rainfall 21.9% and 21.4%, soil water 52.7% and 52.3%, and spring water 26.1% and 28.7%, respectively. Our findings show that a hydrogeochemical mixing model requiring a few tracers can provide similar outcomes than models demanding more tracers as input data. This underlines the value of a preliminary detailed hydrogeochemical characterization as basis to derive the most cost-efficient monitoring strategy.  相似文献   
114.
The trigonometric relationship between slope inclination, the horizontally acting time‐averaged traction force and the vertical depth of transport allows the estimation of one factor, when both others are known. Depth–transport functions can be deduced by comparing the depth distributions of living organisms and their skeletal remains, and this paper simplifies this comparison using foraminifera in which a single test represents an individual. Differences in distribution parameters between living individuals and empty tests allow depth–transport functions to be determined; these functions differ between species at a single transect according to the varying buoyancies of the tests. Within a single species, differences in depth–transport functions between locations are based on either slope inclination or traction intensities. After establishing a mean depth–transport function by averaging species‐characteristic functions, the time‐averaged traction force acting on the studied transect can be calculated. Transport intensities are also estimated using an erosion–deposition diagram that combines the relative frequency distributions of living individuals and empty tests. The proportion of ‘eroded’, ‘parautochthonous’ and ‘allochthonous’ tests mirrors the influence of both slope inclination and traction force for the deposition of empty tests. To test the model, six species of symbiont‐bearing benthic foraminifers were investigated at two transects in front of a NW Pacific coral reef. One transect is distinguished by a strong slope flattening below the steep reef slope (30 m), whereas further steepening characterizes the equivalent part in the other transect. These differences are mirrored in the depth–transport functions as well as in the erosion–deposition diagrams of all species. The time‐averaged traction forces differ in intensities between transects, because of the position of the reef front with respect to the predominant wind direction. However, the form of the functions is identical and distinguished by an increase from the surface to 35 m depth, followed by a decrease down to 105 m. This can be explained by successive onshore and offshore forces acting on the shallow slope, such as the tropical cyclones that cross the region every summer.  相似文献   
115.
西双版纳热带次生林林窗辐射特征初步研究   总被引:5,自引:0,他引:5  
利用西双版纳不同季节热带次生林林窗、林内及旷地不同波长太阳辐射的实测资料,比较分析了热带次生林窗不同波长辐射特征。分析得出:热带次生林窗中央与北侧林冠下的不同波长太阳辐射量值在中午前后迅速达到最大后又急速下降的现象明显;林窗内不同波长太阳辐射日总量值均大于林内,小于旷地;林窗中央和北侧林冠下相比较。一般是北侧林冠下的各辐射要素总量值高于林窗中央;林窗区域的总辐射日总量在干热季最高,雨季和雨季后期次之,雾凉季时最小;林窗中央和北侧林冠下的红外辐射及可见光在总辐射中所占份额随季节的变化而不同,充分显示了林窗辐射环境的异质性;与旷地和林内相比,林窗内各测点的红外辐射在总辐射中所占份额高于旷地却低于林内,而可见光占总辐射的比值情况正好相反。  相似文献   
116.
The best track data of tropical cyclones (TCs) provided by Regional Specialized Meteorological Center (RSMC) Tokyo for the South China Sea (SCS) from 1977 to 2007 are employed to study the spatiotemporal variations (for a period of 12 hours) and the rapid (slow) intensification (RI/SI) of TCs with different intensity. The main results are as follows. (1) Over this period, the tropical storms (TSs) and severe tropical storms (STSs) mostly intensify or are steady while the typhoons (TYs) mostly weaken. The stronger a TC is initially, the more observation of its intensification and the less its variability will be; the more observation of its weakening is, the larger its variability will be. (2) The TC intensifies the fastest at 0000 UTC while weakening the fastest at 1200 UTC. (3) In the intensifying state, TSs, STSs, and TYs are mainly active in the northeastern, central-eastern, and central SCS respectively. The weakening cases mainly distribute over waters east off Hainan Island and Vietnam and west off the Philippines. Some cases of TSs and STSs weaken over the central SCS. (4) The RI cases form farther south in contrast to the SI cases. The RI cases are observed in regions where there are weaker vertical shear and easterly components at 200 hPa. The RI cases also have stronger mid-and lower-level warm-core structure and smaller radii of 15.4 m/s winds. The SI cases have slightly higher SST.  相似文献   
117.
An extreme value analysis (EVA) point process approach has been implemented to examine the flood characteristics of Puerto Rico when tropical cyclones (TCs) are present in the discharge series and when they are removed from it. Mean daily discharge values that exceeded the 99th percentile thresholds were used in both the TC and non-TC data series. In nine of the 12 stations the maximum discharge was associated with a TC, with hurricanes Hortense (1996), Georges (1998) and Eloise (1975) responsible for most of the maximum peaks at each site. Percentage changes in the generalized extreme value parameters, which include location (central tendency), scale (variance) and shape (skewness), between the TC and non-TC data exhibited a decrease in the majority of stations. Stations in the eastern interior and central region of the island showed the largest decrease in all parameters, in flood occurrences and in return periods when TCs were removed from the series.  相似文献   
118.
A new composite index called the yearly tropical cyclone potential impact(YTCPI)is introduced.The relationship between YTCPI and activities of tropical cyclones(TCs)in China,disaster loss,and main ambient fields are investigated to show the potential of YTCPI as a new tool for short-term climate prediction of TCs.YTCPI can indicate TC activity and potential disaster loss.As correlation coefficients between YTCPI and frequency of landfalling TCs,the frequency of TCs traversing or forming inside a 24 h warning line in China from 1971 to 2010 are 0.58 and 0.56,respectively(both are at a statistically significant level,aboveα=0.001).Furthermore,three simple indexes are used to compare with YTCPI.They all have very close relationships with it,with correlation coefficients 0.75,0.82 and 0.78.For economic loss and YTCPI,the correlation coefficient is 0.57 for 1994–2009.Information on principal ambient fields(sea surface temperature,850 and 500 hPa geopotential heights)during the previous winter is reflected in the relationship with YTCPI.Spatial and temporal variabilities of ambient fields are extracted through empirical orthogonal function(EOF)analysis.Spatial distributions of correlation coefficient between YTCPI and ambient fields match the EOF main mode.Correlation coefficients between YTCPI and the EOF time array for the three ambient fields are 0.46,0.44 and 0.4,respectively,all statistically significant,aboveα=0.01.The YTCPI has the overall potential to be an improved prediction tool.  相似文献   
119.
热带气旋移动的数值试验和非线性特色的某些现象   总被引:1,自引:0,他引:1  
  相似文献   
120.
Tropical cyclones and their devastating impacts are of great concern to coastal communities globally. An appropriate approach integrating climate change scenarios at local scales is essential for producing detailed risk models to support cyclone mitigation measures. This study developed a simple cyclone risk-modelling approach under present and future climate change scenarios using geospatial techniques at local scales, and tested using a case study in Sarankhola Upazila from coastal Bangladesh. Linear storm-surge models were developed up to 100-year return periods. A local sea level rise scenario of 0.34?m for the year 2050 was integrated with surge models to assess the climate change impact. The resultant storm-surge models were used in the risk-modelling procedures. The developed risk models successfully identified the spatial extent and levels of risk that match with actual extent and levels within an acceptable limit of deviation. The result showed that cyclone risk areas increased with the increase of return period. The study also revealed that climate change scenario intensified the cyclone risk area by 5–10% in every return period. The findings indicate this approach has the potential to model cyclone risk in other similar coastal environments for developing mitigation plans and strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号