首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3394篇
  免费   685篇
  国内免费   648篇
测绘学   89篇
大气科学   758篇
地球物理   1380篇
地质学   1028篇
海洋学   426篇
天文学   62篇
综合类   109篇
自然地理   875篇
  2024年   18篇
  2023年   40篇
  2022年   71篇
  2021年   136篇
  2020年   176篇
  2019年   174篇
  2018年   145篇
  2017年   148篇
  2016年   140篇
  2015年   161篇
  2014年   177篇
  2013年   263篇
  2012年   162篇
  2011年   212篇
  2010年   165篇
  2009年   221篇
  2008年   227篇
  2007年   241篇
  2006年   257篇
  2005年   214篇
  2004年   173篇
  2003年   151篇
  2002年   148篇
  2001年   145篇
  2000年   113篇
  1999年   114篇
  1998年   81篇
  1997年   82篇
  1996年   64篇
  1995年   50篇
  1994年   58篇
  1993年   37篇
  1992年   26篇
  1991年   26篇
  1990年   13篇
  1989年   15篇
  1988年   9篇
  1987年   19篇
  1986年   9篇
  1985年   7篇
  1984年   10篇
  1983年   7篇
  1982年   7篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
排序方式: 共有4727条查询结果,搜索用时 15 毫秒
581.
南岭  董治宝  肖锋军 《中国沙漠》2017,37(6):1079-1084
粉尘释放是风蚀造成危害的一个重要过程。以农牧交错带沙区和非沙区农田土壤为研究对象,利用室内风洞模拟实验,实时监测了风蚀过程中释放的PM10,分析了PM10的动态变化特征,以深入认识土壤风蚀粉尘释放机理。结果表明:非沙区农田土壤风蚀强度远低于沙区农田,与风速呈指数函数关系;非沙区农田的土壤粉尘释放在不同风速下均以气流直接抬升模式为主,平均PM10通量与风速呈线性函数关系,最大PM10通量与风速呈幂函数关系;沙区农田的土壤粉尘释放在风速增大到一定程度后呈气流直接抬升和砂粒跃移冲击复合模式,最大PM10通量增加不明显,但平均PM10通量明显高于非沙区农田;对于沙区和非沙区农田而言,平均PM10通量与风蚀速率呈对数函数关系。  相似文献   
582.
The Tibetan Plateau serves an important shelter function for the ecological security of Asia, and especially China. Here, we proposed and improved indicators and methods for assessing the ecological sensitivity and vulnerability of the terrestrial alpine Plateau ecosystems and assessed the freeze-thaw erosion, land desertification, water-caused soil loss, and land salinization sensitivity, together with ecological vulnerability, from the overall ecological sensitivity, ecological pressure, and elasticity aspects in Tibet. The results indicate that the terrestrial ecosystem of Tibet is quite sensitive to freeze-thaw erosion, land desertification and water-caused soil loss. Extremely and highly sensitive regions account for 9.62% and 83.69%, respectively, of the total area of the Tibet Autonomous Region. Extremely and highly vulnerable areas account for 0.09% and 52.61%, respectively, primarily distributed in the Himalayan and Gangdise mountain regions in west Tibet; the Nyainqentanglha, Tanggula, Hoh Xil, and Kunlun mountain regions; and the northwest and northern regions of the Changtang Plateau. The results will aid the development of customized protection schedules according to different ecological issues in each region.  相似文献   
583.
Much research has been devoted to the development of numerical models of river incision. In settings where bedrock channel erosion prevails, numerous studies have used field data to calibrate the widely acknowledged stream power model of incision and to discuss the impact of variables that do not appear explicitly in the model's simplest form. However, most studies have been conducted in areas of active tectonics, displaying a clear geomorphic response to the tectonic signal. Here, we analyze the traces left in the drainage network 0.7 My after the Ardennes region (western Europe) underwent a moderate 100–150 m uplift. We identify a set of knickpoints that have traveled far upstream in the Ourthe catchment, following this tectonic perturbation. Using a misfit function based on time residuals, our best fit of the stream power model parameters yields m = 0.75 and K = 4.63 × 10‐8 m‐0.5y‐1. Linear regression of the model time residuals against quantitative expressions of bedrock resistance to erosion shows that this variable does not correlate significantly with the residuals. By contrast, proxies for position in the drainage system prove to be able to explain 76% of the residual variance. High time residuals correlate with knickpoint position in small tributaries located in the downstream part of the Ourthe catchment, where some threshold was reached very early in the catchment's incision history. Removing the knickpoints stopped at such thresholds from the data set, we calculate an improved m = 0.68 and derive a scaling exponent of channel width against drainage area of 0.32, consistent with the average value compiled by Lague for steady state incising bedrock rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
584.
Erosion rates are key to quantifying the timescales over which different topographic and geomorphic domains develop in mountain landscapes. Geomorphic and terrestrial cosmogenic nuclide (TCN) methods were used to determine erosion rates of the arid, tectonically quiescent Ladakh Range, northern India. Five different geomorphic domains are identified and erosion rates are determined for three of the domains using TCN 10Be concentrations. Along the range divide between 5600 and 5700 m above sea level (asl), bedrock tors in the periglacial domain are eroding at 5.0 ± 0.5 to 13.1 ± 1.2 meters per million years (m/m.y.)., principally by frost shattering. At lower elevation in the unglaciated domain, erosion rates for tributary catchments vary between 0.8 ± 0.1 and 2.0 ± 0.3 m/m.y. Bedrock along interfluvial ridge crests between 3900 and 5100 m asl that separate these tributary catchments yield erosion rates <0.7 ± 0.1 m/m.y. and the dominant form of bedrock erosion is chemical weathering and grusification. Erosion rates are fastest where glaciers conditioned hillslopes above 5100 m asl by over‐steepening slopes and glacial debris is being evacuated by the fluvial network. For range divide tors, the long‐term duration of the erosion rate is considered to be 40–120 ky. By evaluating measured 10Be concentrations in tors along a model 10Be production curve, an average of ~24 cm is lost instantaneously every ~40 ky. Small (<4 km2) unglaciated tributary catchments and their interfluve bedrock have received very little precipitation since ~300 ka and the long‐term duration of their erosion rates is 300–750 ky and >850 ky, respectively. These results highlight the persistence of very slow erosion in different geomorphic domains across the southwestern slope of the Ladakh Range, which on the scale of the orogen records spatial changes in the locus of deformation and the development of an orogenic rain shadow north of the Greater Himalaya. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
585.
River channel sediment dynamics are important in integrated catchment management because changes in channel morphology resulting from sediment transfer have important implications for many river functions. However, application of existing approaches that account for catchment‐scale sediment dynamics has been limited, largely due to the difficulty in obtaining data necessary to support them. It is within this context that this study develops a new, reach‐based, stream power balance approach for predicting river channel adjustment. The new approach, named ST:REAM (sediment transport: reach equilibrium assessment method), is based upon calculations of unit bed area stream power (ω) derived from remotely sensed slope, width and discharge datasets. ST:REAM applies a zonation algorithm to values of ω that are spaced every 50 m along the catchment network in order to divide the branches of the network up into relatively homogenous reaches. ST:REAM then compares each reach's ω value with the ω of its upstream neighbour in order to predict whether or not the reach is likely to be either erosion dominated or deposition dominated. The paper describes the application of ST:REAM to the River Taff in South Wales, UK. This test study demonstrated that ST:REAM can be rapidly applied using remotely sensed data that are available across many river catchments and that ST:REAM correctly predicted the status of 87.5% of sites within the Taff catchment that field observations had defined as being either erosion or deposition dominated. However, there are currently a number of factors that limit the usefulness of ST:REAM, including inconsistent performance and the need for additional, resource intensive, data to be collected to both calibrate the model and aid interpretation of its results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
586.
Reef islands on the Great Barrier Reef are influenced by a range of environmental factors. A meta‐analysis of 103 islands is presented to express variation in island size (area and volume) as a function of latitudinal and cross shelf gradients in regional oceanographic factors (exposure to incident waves, tidal range and tropical cyclone frequency) and local physical factors (position on the shelf, area, length and depth of supporting reef platform, vegetative cover). Models performed well for unvegetated sandcays (R2 = 0.89), vegetated sandcays (R2 = 0·72) and low wooded islands (R2 = 0.78), with a moderate level of variation explained when all islands were simultaneously regressed (R2 = 0.58). Future island dynamics were simulated for anticipated changes in cyclone regime, wave activity and sea level. For 38 islands mapped on the 1973 Royal Society and Universities of Queensland Expedition to the Northern Great Barrier Reef, change over the same 22 year period (1973–1995) was determined and the relative magnitude of observed and modelled changes was compared and found to be consistent through rank correlation analysis (Γ = 0.84 for unvegetated sandcays, Γ = 0.81 for vegetated sandcays). Simulations of island area or volume change from 2000 to 2100 indicated that under a 30% decrease in tropical cyclone activity, unvegetated sandcays continue to accrete at a lower rate, whereas all island types erode under a 38% increase in tropical cyclone activity. Vegetated sandcays initially accrete at higher levels of cyclone activity, entering an erosive state with a 60% increase in activity. Low wooded islands are unresponsive to environmental changes modelled. A sensitivity analysis of vegetated and unvegetated sandcays indicated that the presence of vegetation increases the tropical cyclone activity threshold at which islands begin to erode. Greatest sedimentary losses occur within the central band of high cyclone activity between Cooktown and Mackay. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
587.
A growing body of field, theoretical and numerical modelling studies suggests that predicting river response to even major changes in input variables is difficult. Rivers are seen to adjust rapidly and variably through time and space as well as changing independently of major driving variables. Concepts such as Self‐Organized Criticality (SOC) are considered to better reflect the complex interactions and adjustments occurring in systems than traditional approaches of cause and effect. This study tests the hypothesis that riverbank mass failures which occurred both prior to, and during, an extreme flood event in southeast Queensland (SEQ) in 2011 are a manifestation of SOC. Each wet‐flow failure is somewhat analogous to the ‘avalanche’ described in the initial sand‐pile experiments of Bak et al. (Physical Review Letters, 1987, 59(4), 381–384) and, due to the use of multitemporal LiDAR, the time period of instability can be effectively constrained to that surrounding the flood event. The data is examined with respect to the key factors thought to be significant in evaluating the existence of SOC including; non‐linear temporal dynamics in the occurrence of disturbance events within the system; an inverse power‐law relation between the magnitude and frequency of the events; the existence of a critical state to which the system readjusts after a disturbance; the existence of a cascading processes mechanism by which the same process can initiate both low‐magnitude and high‐magnitude events. While there was a significant change in the frequency of mass failures pre‐ and post‐flood, suggesting non‐linear temporal dynamics in the occurrence of disturbance events, the data did not fit an inverse power‐law within acceptable probability and other models were found to fit the data better. Likewise, determining a single ‘critical’ state is problematic when a variety of feedbacks and multiple modes of adjustment are likely to have operated throughout this high magnitude event. Overall, the extent to which the data supports a self‐organized critical state is variable and highly dependent upon inferential arguments. Investigating the existence of SOC, however, provided results and insights that are useful to the management and future prediction of these features. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
588.
Australian meteorological observers started using the World Meteorological Organization (WMO) weather coding system in the 1950s. This system is still in use around the world today. However, observing and recording the weather in an organized and systematic manner had been ongoing for over 100 years prior to the adoption of this coding system, and much like Australia, most countries will have historical meteorological records. In this paper we compare the wind erosion of two of the greatest droughts in Australian recorded history; the World War II (WWII) Drought (1937–1945) and the Millennium Drought (2001–2009). To do this we analysed previously unavailable meteorological observer records from the Australian Bureau of Meteorology (ABM). Wind erosion records, mostly in long‐hand written form, were translated to the modern WMO coding system for the WWII Drought and compared with the wind erosion of Australia's recently‐ended Millennium Drought, one of the longest and harshest on record. We quantify wind erosion using Dust Event Days (DED) and a modified version of a published Dust Storm Index (DSI) to show that wind erosion during the WWII Drought was up to 4.6 times higher than during the Millennium Drought. This study has international significance because it demonstrates a methodology for tracking changes in wind erosion over the past 75 years based on observer records available in every country with a history of organized weather observation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
589.
The roles of pre‐frontal, frontal and post‐frontal winds as the primary wind systems for dust entrainment and transport in Australia are well established. While the relevance of each system has been observed across different wind erosion events in central Australia, the entrainment of dust by all three winds during the passage of an individual front has not been demonstrated until now. Synoptic information, satellite aerosol and imagery, meteorological and dust concentration data are presented for a single case study erosion event in the lower Lake Eyre Basin. This event demonstrates variable dust transport in three different directions from one of the southern Hemisphere's most significant source regions, and the changing nature of the active dust pathways during the passage of a frontal system. While only a single dust event is considered, the findings show the complexity of mineral aerosol emission and transport patterns even within an individual dust outbreak. For the lower Lake Eyre Basin, this appreciation of pathway behaviour is significant for better understanding the role of aeolian inputs from the dominant Australian source to surrounding marine systems. In a wider context, the findings exhibit the detailed insights into major dust source dynamics that can be obtained from high resolution spatial and particularly temporal data, as used in combination. This work highlights the importance of adequately resolved data for the accurate determination of dust entrainment and transport patterns of major dust sources. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
590.
Land degradation in South Africa has been of concern for more than 100 years with both climate change and inappropriate land management (overgrazing) being proposed as primary drivers. However, there are few quantitative studies of degradation and, in particular, few of erosion by water. Badlands, taken here to be the landform which results from extreme erosion, have been notably neglected. We report on 13 consecutive years of erosion pin measurements of badland erosion on 10 study sites in the Sneeuberg uplands of the eastern Karoo in South Africa. The study sites are on Holocene colluvium which mantles footslopes. They have been subject to overgrazing for at least 100 years, c. 1850–1950. Currently they are lightly grazed by sheep. The area receives about 500 mm rainfall per year. The sites are remote, with only informal, farmer‐operated, daily raingauges nearby. The nearest sub‐daily raingauge is c. 55 km distant. Also we report on an analysis of the erosion pin data which focuses on establishing the origins and context of the badlands, including the relationship between study sites and adjacent valley‐bottom gully systems; compare erosion rates on our study sites with rates determined by erosion pins on other badland sites; and discuss the implications of these erosion rates for landscape development and off‐site impacts. Net erosion rates on the study sites are relatively high compared with global badland rates and range from 3.1 to 8.5 mm yr‐1 which may be extrapolated to 53 to 145 t ha yr‐1 (using a measured bulk density of 1.7 g cm‐3). However, comparisons with badland sites elsewhere are difficult because of different measuring methodologies, lithologies, climate and dominant processes. Erosion rates on the study sites are strongly influenced by rainfall amounts and, in particular, by daily rainfall events which exceed ~10 mm: this is the threshold intensity at which runoff has been observed to commence on badlands. Of significance, but of lesser influence, is weathering, mainly by wetting and drying: this prepares bare surfaces for erosion. However, questions remain regarding the role of site characteristics, and of processes at each site, in determining between‐site differences in erosion rate. Crude extrapolation of current rates of erosion, in conjunction with depths of incision into the badlands, suggests that badland development started around 200 years ago, probably as a response to the introduction of European‐style stock farming which resulted in overgrazing. We assume, but cannot quantify, the additional influence of periods of drought and burning in the erosional history of the area. Intermittent connection of these badlands to valley‐bottom gullies and therefore to small farm dams and ultimately to large water storage reservoirs increases their impact on local water resources. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号