首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6383篇
  免费   1366篇
  国内免费   1782篇
测绘学   401篇
大气科学   2054篇
地球物理   1832篇
地质学   1872篇
海洋学   1428篇
天文学   126篇
综合类   597篇
自然地理   1221篇
  2024年   31篇
  2023年   87篇
  2022年   234篇
  2021年   278篇
  2020年   339篇
  2019年   370篇
  2018年   291篇
  2017年   328篇
  2016年   329篇
  2015年   350篇
  2014年   446篇
  2013年   470篇
  2012年   462篇
  2011年   447篇
  2010年   351篇
  2009年   402篇
  2008年   390篇
  2007年   469篇
  2006年   451篇
  2005年   394篇
  2004年   348篇
  2003年   284篇
  2002年   236篇
  2001年   221篇
  2000年   216篇
  1999年   184篇
  1998年   195篇
  1997年   154篇
  1996年   136篇
  1995年   93篇
  1994年   104篇
  1993年   101篇
  1992年   76篇
  1991年   65篇
  1990年   32篇
  1989年   34篇
  1988年   37篇
  1987年   25篇
  1986年   13篇
  1985年   11篇
  1984年   7篇
  1983年   4篇
  1982年   9篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   7篇
  1977年   2篇
  1976年   1篇
  1954年   7篇
排序方式: 共有9531条查询结果,搜索用时 15 毫秒
861.
通过砾质戈壁风沙流野外实测数据的分析以及风洞模拟实验研究发现:戈壁风沙流结构具有与沙漠风沙流完全不同的风沙流特征,戈壁风沙地表的粗糙度随风速的增大而增加,其表面风沙流输沙量高度分布表现出独特的"象鼻"效应,在一定高度处呈现最大值,并随风速的增加而增高。该"象鼻"效应导致戈壁风沙流结构特征值λ远大于 1,不论风速多大,风沙流都处于未饱和状态的非堆积搬运状态。这种特殊性质比较清楚地解释了敦煌莫高窟千年来不被沙山埋没的谜底。并且在风沙防治工程实践中,采用砾石压沙措施,构造类似与砾质戈壁的下垫面,人工促使风沙流结构呈现"象鼻"形状,可使防沙工程达到理想的输导作用。  相似文献   
862.
Parameters play a very important and determinative role in the dynamics of a dynamical system as well as in the formation of its particular characteristics. In this paper we investigate the way in which a large scale variation of the mass parameter, influences the behavior of a mass-less particle which moves in the vicinity of a ring arrangement of N-bodies. More precisely, we study the impact of this parameter on periodic motions and their characteristics.  相似文献   
863.
The 0.5°×0.5°grid resolution distribution of lightning density in China and its circumjacent regions have been analyzed by using the satellite-borne OTD (Apr 1995-Mar 2000) and LIS (Dec 1997-Mar 2003) databases. It is shown that: (i) Firstly, the variability of the lightning density (LD) is particularly pronounced over the different subareas, 9 times greater over the south than the north side of Himalayas Mountains, 2.5 times greater over the eastern than the western area of China. While the maximum and minimum LD are respectively 31.4fl/km2/a (in Guangzhou region) and less than 0.2fl/km2/a (in the desert of western China). Secondly, the LD of China's continent regularly varies with latitude and distance off coast, which is consistent with annual mean precipitation in varying trend. In conclusion, the Qinghai-Tibet Plateau, the China's three-step staircase topography and the latitude are three important factors affecting macro-scale characteristics of the LD distribution, (ii) The regional differences  相似文献   
864.
The main portion of the inner radiation belt en-countered by spacecraft in low-Earth orbits (LEOs) is concentrated over the South Atlantic Anomaly (SAA) where satellites observed the highest particle flux. The anomaly arises from the Earth’s magnetic field being less intense in the region centered near the east of the Atlantic coast of South America. The trapped radiation belt particles therefore have their lowest mirroring altitudes over the center region of the SAA. Drift shells in t…  相似文献   
865.
Lithospheric thermal structure in the Baltic shield   总被引:1,自引:0,他引:1  
  相似文献   
866.
Spatial variation in the importance of determinants of participation in the Aid to Families with Dependent Children program (AFDC) is investigated for the U.S. Casetti's Expansion Method is applied to the two-dimensional space domain by making the model's parameters a function of state x–y centroids. The spatially-varying parameter model suggests that the black population's association with participation is lowest in the Southeast and Northwest and greatest in the Southwest and Northeast.  相似文献   
867.
北京地区大气主要温室气体的季节变化   总被引:7,自引:0,他引:7  
摘 要:报道了北京主要温室气体浓度最新变化情况,采用1993—2002年北京主要温室气体周平均浓度的数据,用时间序列分解的方法对其季节变化进行了分析研究,并对造成北京主要温室气体季节变化的原因进行了初步探讨。分析发现北京大气CH4的季节变化范围在-49.2×10- 9~ 55.7×10- 9(V/V)之间,并呈现出双峰模态;北京大气CO2浓度的季节变化范围在-26.4×10- 6~ 34.0×10- 6(V/V)之间;北京大气 N 2 O浓度变化没有明显的季节变化特点。  相似文献   
868.
Atmospheric densities derived from CHAMP/STAR accelerometer observations   总被引:3,自引:0,他引:3  
The satellite CHAMP carries the accelerometer STAR in its payload and thanks to the GPS and SLR tracking systems accurate orbit positions can be computed. Total atmospheric density values can be retrieved from the STAR measurements, with an absolute uncertainty of 10-15%, under the condition that an accurate radiative force model, satellite macro-model, and STAR instrumental calibration parameters are applied, and that the upper-atmosphere winds are less than . The STAR calibration parameters (i.e. a bias and a scale factor) of the tangential acceleration were accurately determined using an iterative method, which required the estimation of the gravity field coefficients in several iterations, the first result of which was the EIGEN-1S (Geophys. Res. Lett. 29 (14) (2002) 10.1029) gravity field solution. The procedure to derive atmospheric density values is as follows: (1) a reduced-dynamic CHAMP orbit is computed, the positions of which are used as pseudo-observations, for reference purposes; (2) a dynamic CHAMP orbit is fitted to the pseudo-observations using calibrated STAR measurements, which are saved in a data file containing all necessary information to derive density values; (3) the data file is used to compute density values at each orbit integration step, for which accurate terrestrial coordinates are available. This procedure was applied to 415 days of data over a total period of 21 months, yielding 1.2 million useful observations. The model predictions of DTM-2000 (EGS XXV General Assembly, Nice, France), DTM-94 (J. Geod. 72 (1998) 161) and MSIS-86 (J. Geophys. Res. 92 (1987) 4649) were evaluated by analysing the density ratios (i.e. “observed” to “computed” ratio) globally, and as functions of solar activity, geographical position and season. The global mean of the density ratios showed that the models underestimate density by 10-20%, with an rms of 16-20%. The binning as a function of local time revealed that the diurnal and semi-diurnal components are too strong in the DTM models, while all three models model the latitudinal gradient inaccurately. Using DTM-2000 as a priori, certain model coefficients were re-estimated using the STAR-derived densities, yielding the DTM-STAR test model. The mean and rms of the global density ratios of this preliminary model are 1.00 and 15%, respectively, while the tidal and latitudinal modelling errors become small. This test model is only representative of high solar activity conditions, while the seasonal effect is probably not estimated accurately due to correlation with the solar activity effect. At least one more year of data is required to separate the seasonal effect from the solar activity effect, and data taken under low solar activity conditions must also be assimilated to construct a model representative under all circumstances.  相似文献   
869.
中国海岸带分布规律及其海部要素变化检测   总被引:2,自引:1,他引:1  
在海岸带图测绘完成后,海部要素的变化是导致海岸带图使用价值降低的重要因素.根据我国海岸的组成物质将其归纳为淤泥质海岸、沙砾质海岸、基岩海岸、红树海岸和珊瑚海岸,并归纳总结了每一种海岸的空间分布规律.分析了影响海岸线、干出滩以及近海水深等海部要素变化的主要因素,海岸要素变化的因素和变化规律,进而提出了海部要素实质性变化的检测统计方法,对提高海岸带图测绘效率、缩短成图周期、确定更新周期和制定更新方案都具有重要的意义.  相似文献   
870.
The systematic discrepancies in both tsunami arrival time and leading negative phase (LNP) were identified for the recent transoceanic tsunami on 16 September 2015 in Illapel, Chile by examining the wave characteristics from the tsunami records at 21 Deep-ocean Assessment and Reporting of Tsunami (DART) sites and 29 coastal tide gauge stations. The results revealed systematic travel time delay of as much as 22 min (approximately 1.7% of the total travel time) relative to the simulated long waves from the 2015 Chilean tsunami. The delay discrepancy was found to increase with travel time. It was difficult to identify the LNP from the near-shore observation system due to the strong background noise, but the initial negative phase feature became more obvious as the tsunami propagated away from the source area in the deep ocean. We determined that the LNP for the Chilean tsunami had an average duration of 33 min, which was close to the dominant period of the tsunami source. Most of the amplitude ratios to the first elevation phase were approximately 40%, with the largest equivalent to the first positive phase amplitude. We performed numerical analyses by applying the corrected long wave model, which accounted for the effects of seawater density stratification due to compressibility, self-attraction and loading (SAL) of the earth, and wave dispersion compared with observed tsunami waveforms. We attempted to accurately calculate the arrival time and LNP, and to understand how much of a role the physical mechanism played in the discrepancies for the moderate transoceanic tsunami event. The mainly focus of the study is to quantitatively evaluate the contribution of each secondary physical effect to the systematic discrepancies using the corrected shallow water model. Taking all of these effects into consideration, our results demonstrated good agreement between the observed and simulated waveforms. We can conclude that the corrected shallow water model can reduce the tsunami propagation speed and reproduce the LNP, which is observed for tsunamis that have propagated over long distances frequently. The travel time delay between the observed and corrected simulated waveforms is reduced to <8 min and the amplitude discrepancy between them was also markedly diminished. The incorporated effects amounted to approximately 78% of the travel time delay correction, with seawater density stratification, SAL, and Boussinesq dispersion contributing approximately 39%, 21%, and 18%, respectively. The simulated results showed that the elastic loading and Boussinesq dispersion not only affected travel time but also changed the simulated waveforms for this event. In contrast, the seawater stratification only reduced the tsunami speed, whereas the earth's elasticity loading was responsible for LNP due to the depression of the seafloor surrounding additional tsunami loading at far-field stations. This study revealed that the traditional shallow water model has inherent defects in estimating tsunami arrival, and the leading negative phase of a tsunami is a typical recognizable feature of a moderately strong transoceanic tsunami. These results also support previous theory and can help to explain the observed discrepancies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号