全文获取类型
收费全文 | 770篇 |
免费 | 16篇 |
国内免费 | 11篇 |
专业分类
测绘学 | 13篇 |
地球物理 | 47篇 |
地质学 | 47篇 |
海洋学 | 117篇 |
天文学 | 543篇 |
综合类 | 2篇 |
自然地理 | 28篇 |
出版年
2023年 | 1篇 |
2022年 | 3篇 |
2021年 | 7篇 |
2020年 | 4篇 |
2019年 | 3篇 |
2018年 | 3篇 |
2017年 | 6篇 |
2016年 | 5篇 |
2015年 | 6篇 |
2014年 | 9篇 |
2013年 | 31篇 |
2012年 | 14篇 |
2011年 | 13篇 |
2010年 | 4篇 |
2009年 | 59篇 |
2008年 | 76篇 |
2007年 | 57篇 |
2006年 | 60篇 |
2005年 | 63篇 |
2004年 | 56篇 |
2003年 | 53篇 |
2002年 | 45篇 |
2001年 | 51篇 |
2000年 | 34篇 |
1999年 | 25篇 |
1998年 | 43篇 |
1997年 | 9篇 |
1996年 | 13篇 |
1995年 | 9篇 |
1994年 | 11篇 |
1993年 | 3篇 |
1992年 | 3篇 |
1991年 | 4篇 |
1990年 | 2篇 |
1988年 | 4篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 2篇 |
1982年 | 1篇 |
1981年 | 2篇 |
1979年 | 1篇 |
排序方式: 共有797条查询结果,搜索用时 15 毫秒
51.
Characterization of the shallow subsurface (0.25 to 10 m) is of growing importance for engineering activities, solutions of environmental problems, and archaeological investigations. Ground-penetrating radar (GPR) is an appropriate technique considering the depth range of interest, the strength of electric and magnetic contrasts between different subsurface layers and buried objects, and the required resolution. GPR surveys can detect subsurface structures by recording electromagnetic reflections from discontinuities. The detectability of objects and the delineation of subsurface structures increases with increasing wave velocity and conductivity differences between the object and its surroundings or between adjacent layers. However, unwanted reflections from objects above the surface influence the images. Shielded antennas can be used to avoid strong reflections from these objects. The data thus obtained are, however, more difficult to interpret. The fundamentals of GPR and two different acquisition setups for a GPR system are discussed. Basic interpretation tools for travel-time and velocity estimation are described, and finally, case studies are presented, followed by conclusions. 相似文献
52.
Modelling of space weather effects on pipelines 总被引:1,自引:0,他引:1
Antti Pulkkinen Risto Pirjola David Boteler Ari Viljanen Igor Yegorov 《Journal of Applied Geophysics》2001,48(4)
The interaction between the solar wind and the Earth's magnetic field produces time varying currents in the ionosphere and magnetosphere. The currents cause variations of the geomagnetic field at the surface of the earth and induce an electric field which drives currents in oil and gas pipelines and other long conductors. Geomagnetically induced currents (GIC) interfere with electrical surveys of pipelines and possibly contribute to pipeline corrosion.In this paper, we introduce a general method which can be used to determine voltage and current profiles for buried pipelines, when the external geoelectric field and the geometry and electromagnetic properties of the pipeline are known. The method is based on the analogy between pipelines and transmission lines, which makes it possible to use the distributed source transmission line (DSTL) theory. The general equations derived for the current and voltage profiles are applied in special cases. A particular attention is paid to the Finnish natural gas pipeline network.This paper, related to a project about GIC in the Finnish pipeline, thus provides a tool for understanding space weather effects on pipelines. Combined with methods of calculating the geoelectric field during magnetic storms, the results are applicable to forecasting of geomagnetically induced currents and voltages on pipelines in the future. 相似文献
53.
While many surface foraging seabirds ingest plastic, the spatial overlap of these far-ranging predators with debris aggregations at-sea is poorly understood. We surveyed concurrent distributions of marine birds and debris along a 4400 km cruise track within a debris accumulation area in the North East Pacific Ocean using line and strip transect methods. Analysis of debris and bird distributions revealed associations with oceanographic and weather variables at two spatial scales: daily surveys and hourly transects. Hourly bird abundance (densities; 0-9 birds km−2) was higher in lower wind and shallower water. Hourly debris abundance (densities; 0-15,222 pieces km−2) was higher in lower wind, higher sea-level atmospheric pressure and deeper water. These results suggest that debris and seabird abundance and community structure are influenced by similar environmental processes, but in opposing ways, with only three far-ranging seabird species (Black-footed Albatross, Cook’s Petrel and Red-tailed Tropicbird) overlapping with high debris concentrations over meso-scales. 相似文献
54.
Bruce S. Gibson 《Pure and Applied Geophysics》1988,128(1-2):309-331
Three types of seismic data recorded near Coalinga, California were analyzed to study the behavior of scattered waves: 1) aftershocks of the May 2, 1983 earthquake, recorded on verticalcomponent seismometers deployed by the USGS; 2) regional refraction profiles using large explosive sources recorded on essentially the same arrays above; 3) three common-midpoint (CMP) reflection surveys recorded with vibrator sources over the same area. Records from each data set were bandpassed filtered into 5 Hz wide passbands (over the range of 1–25 Hz), corrected for geometric spreading, and fit with an exponential model of amplitude decay. Decay rates were expressed in terms of inverse codaQ (Q
c
–1
).Q
c
–1
values for earthquake and refraction data are generally comparable and show a slight decrease with increasing frequency. Decay rates for different source types recorded on proximate receivers show similar results, with one notable exception. One set of aftershocks shows an increase ofQ
c
–1
with frequency.Where the amplitude decay rates of surface and buried sources are similar, the coda decay results are consistent with other studies suggesting the importance of upper crustal scattering in the formation of coda. Differences in the variation ofQ
c
–1
with frequency can be correlated with differences in geologic structure near the source region, as revealed by CMP-stacked reflection data. A more detailed assessment of effects such as the depth dependence of scattered contributions to the coda and the role of intrinsic attenuation requires precise control of source-receiver field geometry and the study of synthetic seismic data calculated for velocity models developed from CMP reflection data. 相似文献
55.
Obtaining depth of closure (DoC) in an accurate manner is a fundamental issue for coastal engineering, since good results for coastal structures and beach nourishment depend mainly on DoC. Currently, there are two methods for obtaining the DoC, mathematical formulations and profile surveys. However, these methods can incur important errors if one does not take into account the characteristics and morphology of the area, or if one does not have a sufficiently long time series. In this work the DoC is obtained from the break in the trend of the sediment with the depth, that is, in general with the increase of the depth a decrease in the size of the sediment takes place. However, at one point this tendency changes and the size increases, and then decreases again. When comparing the point where the minimum sediment size occurs before the increase, it is observed that the error incurred is small compared to other methods. If the Standard Deviation of Depth Change (SDDC) method is considered as the most accurate method, the error incurred by the proposed method is less than 7%. In addition, it can be seen that the dispersion of the sediment method always occurs outside the zone of bar movement. Whereas in the methods of profiles survey (using 2 cm precision profiles), sometimes the DoC is obtained within the active zone of bar movement. In addition, where the relative minimum of the median sediment size is found, and the sizes of 0.063 and 0.125 mm predominate in the composition of the sample. Therefore, this new method allows the precise location of the DoC to be obtained in a fast and simple way. Furthermore, this method has the advantage that it is not affected by the modifications that may be experienced by both the study area and the cross-shore beach profile. 相似文献
56.
A.W. Jones R.J. Davis A. Wilkinson G. Giardino S.J. Melhuish H. Asareh R.D. Davies A.N. Lasenby 《Monthly notices of the Royal Astronomical Society》2001,327(2):545-551
We present the joint analysis of two 5-GHz interferometric surveys of the northern sky, taken with different baselines. The two surveys were carried out on the Jodrell Bank 5-GHz interferometer based at Manchester. The Maximum Entropy Method is used to check the consistency of the two surveys and the final two-dimensional maps are used, together with low-frequency full sky surveys, to put constraints on the Galactic spectral index. It is found that synchrotron emission is the dominant process at high Galactic latitudes below 5 GHz. 相似文献
57.
C. R. Purcell R. Balasubramanyam M. G. Burton A. J. Walsh V. Minier M. R. Hunt-Cunningham L. L. Kedziora-Chudczer S. N. Longmore T. Hill I. Bains P. J. Barnes A. L. Busfield P. Calisse N. H. M. Crighton S. J. Curran T. M. Davis J. T. Dempsey G. Derragopian B. Fulton M. G. Hidas M. G. Hoare J.-K. Lee E. F. Ladd S. L. Lumsden T. J. T. Moore M. T. Murphy R. D. Oudmaijer M. B. Pracy J. Rathborne S. Robertson A. S. B. Schultz J. Shobbrook P. A. Sparks J. Storey T. Travouillion 《Monthly notices of the Royal Astronomical Society》2006,367(2):553-576
58.
59.
NEAR-FAULT DISPLACEMENT AND DEFORMATION OBTAINED FROM ONE-KILOMETER-LONG FAULT-CROSSING BASELINE MEASUREMENTS-A PRELIMINARY EXPERIMENT AT 2 SITES ON THE EASTERN BOUNDARY OF THE SICHUAN-YUNNAN BLOCK 下载免费PDF全文
The current and conventional fault-crossing short baseline measurement has a relatively high precision, but its measurement arrays usually fail to or cannot completely span major active fault zones due to the short length of the baselines, which are only tens to 100 meters. GNSS measurement has relatively low resolution on near-fault deformation and hence is not suitable for monitoring those faults with low motion and deformation rates, due to sparse stations and relatively low accuracy of the GNSS observation. We recently built up two experimental sites on the eastern boundary of the active Sichuan-Yunnan block, one crossing the Daqing section of the Zemuhe Fault and the other crossing the Longshu section of the Zhaotong Fault, aiming to test the measurement of near-fault motion and deformation by using fault-crossing arrays of one-kilometer-long baselines. In this paper, from a three-year-long data set we firstly introduce the selection of the sites and the methods of the measurement. We then calculate and analyze the near-field displacement and strain of the two sites by using three hypothetical models, the rigid body, elastic and composed models, proposed by previous researchers. In the rigid body model, we assume that an observed fault is located between two rigid blocks and the observed variances in baseline lengths result from the relative motion of the blocks. In the elastic model, we assume that a fault deforms uniformly within the fault zone over which a baseline array spans, and in the array baselines in different directions may play roles as strainmeters whose observations allow us to calculate three components of near-fault horizontal strain. In the composed model, we assume that both displacement and strain are accumulated within the fault zone that a baseline array spans, and both contribute to the observed variances in baseline lengths. Our results show that, from the rigid body model, variations in horizontal fault-parallel displacement component of the Zemuhe Fault at the Daqing site fluctuate within 3mm without obvious tendencies. The displacement variation in the fault-normal component keeps dropping in 2015 and 2016 with a cumulative decrease of 6mm, reflecting transverse horizontal compression, and it turns to rise slightly(suggesting extension)in 2017. From the elastic model, the variation in horizontal fault-normal strain component of the fault at Daqing shows mainly compression, with an annual variation close to 10-5, and variations in the other two strain components are at the order of 10-6. For the Longshu Fault, the rigid-body displacement of the fault varies totally within a few millimeters, but shows a dextral strike-slip tendency that is consistent with the fault motion known from geological investigation, and the observed dextral-slip rate is about 0.7mm/a on average. The fault-parallel strain component of the Longshu Fault is compressional within 2×10-6, and the fault-normal strain component is mainly extensional. Restricted by the assumption of rigid-body model, we have to ignore homolateral deformation on either side of an observed fault and attribute such deformation to the fault displacement, resulting in an upper limit estimate of the fault displacement. The elastic model emphasizes more the deformation on an observed fault zone and may give us information about localizations of near-fault strain. The results of the two sites from the composed model suggest that it needs caution when using this model due to that big uncertainty would be introduced in solving relevant equations. Level surveying has also been carried out at the meantime at the two sites. The leveling series of the Daqing site fluctuates within 4mm and shows no tendency, meaning little vertical component of fault motion has been observed at this site; while, from the rigid-body model, the fault-normal motion shows transverse-horizontal compression of up to 6mm, indicating that the motion of the Zemuhe Fault at Daqing is dominantly horizontal. The leveling series of the Longshu site shows a variation with amplitude comparable with that observed from the baseline series here, suggesting a minor component of thrust faulting; while the baseline series of the same site do not present tendencies of fault-normal displacement. Since the steep-dip faults at the two sites are dominantly strike-slip in geological time scale, we ignore probable vertical movement temporarily. In addition, lengths of homolateral baselines on either side of the faults change somewhat over time, and this makes us consider the existence of minor faults on either side of the main faults. These probable minor faults may not reach to the surface and have not been identified through geological mapping; they might result in the observed variances in lengths of homolateral baselines, fortunately such variations are small relative to those in fault-crossing baselines. In summary, the fault-crossing measurement using arrays with one-kilometer-long baselines provides us information about near-fault movement and strain, and has a slightly higher resolution relative to current GNSS observation at similar time and space scales, and therefore this geodetic technology will be used until GNSS networks with dense near-fault stations are available in the future. 相似文献
60.