首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1236篇
  免费   214篇
  国内免费   521篇
测绘学   3篇
大气科学   2篇
地球物理   130篇
地质学   1542篇
海洋学   209篇
综合类   57篇
自然地理   28篇
  2024年   13篇
  2023年   20篇
  2022年   38篇
  2021年   55篇
  2020年   54篇
  2019年   56篇
  2018年   60篇
  2017年   48篇
  2016年   61篇
  2015年   45篇
  2014年   100篇
  2013年   93篇
  2012年   102篇
  2011年   77篇
  2010年   68篇
  2009年   79篇
  2008年   77篇
  2007年   90篇
  2006年   56篇
  2005年   93篇
  2004年   63篇
  2003年   75篇
  2002年   69篇
  2001年   65篇
  2000年   70篇
  1999年   41篇
  1998年   44篇
  1997年   48篇
  1996年   41篇
  1995年   31篇
  1994年   30篇
  1993年   32篇
  1992年   18篇
  1991年   15篇
  1990年   4篇
  1989年   14篇
  1988年   7篇
  1987年   9篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
排序方式: 共有1971条查询结果,搜索用时 125 毫秒
151.
运用电感耦合等离子体质谱(ICP-MS)、X射线荧光光谱(XRF)、带能谱仪的扫描电镜(SEM-EDX)、逐级化学提取(SCEP)和光学显微镜等方法,对贵州大方煤田11号煤层的地球化学和矿物学进行了研究。结果表明,大方煤田11号煤层中有高含量的脉状石英(11.4%)和脉状铁白云石(10.2%),铁白云石周边常被针铁矿所包裹,在脉状石英中发现有热液成因的黄铜矿、闪锌矿和硒方铅矿,此外,还有少量高岭石充填在脉中,这7种矿物常常同脉共存。脉状石英和脉状铁白云石分别来源于硅质和富铁的钙质低温热液流体,形成温度分别为180℃和85℃。脉状石英早于脉状铁白云石形成。根据Ca/Sr和Fe/Mn值,确定出铁白云石的形成至少经历了3个时期。这7种矿物按照从早到晚的生成顺序为硫化物、石英、高岭石、铁白云石和针铁矿。铁白云石是煤中Mn、Cu、Ni、Pb和Zn富集的主要原因,这5种微量元素的含量分别为0.09%、74.0μg/g、33.6μg/g、185μg/g和289μg/g。脉状石英是煤中铂族元素Pd、Pt和Ir的主要载体,它们在煤中的含量分别为1.57μg/g、0.15μg/g和0.007μg/g。另外,黄铜矿、闪锌矿和硒方铅矿亦是11号煤层中Cu、Zn和Pb的重要载体。  相似文献   
152.
江西银山热液多金属矿床矿体围岩发生了强烈的伊利石化,研究这些伊利石化是认识本矿床成矿作用的关键之一。通过伊利石的化学成分和矿体围岩蚀变前后的化学成分比较等方面的研究,本文得出以下认识:银山矿矿体围岩千枚岩、英安质流纹岩和中酸性次火山岩都发生了强烈的伊利石化,矿石与蚀变千枚岩中伊利石的化学成分最为相近。银山矿矿体蚀变围岩的化学成分以K2O的含量较高、Na2O和CaO的含量都很低(平均值都在0.11%左右)为特征,矿体围岩在伊利石化过程中Ca和Na被大量带出。综合各方面的证据推测,引起强烈伊利石化的热液是以H2O+CO2为主要组份的氧化性火山-次火山热液。  相似文献   
153.
在综合分析凤-太矿集区成矿构造特征的基础上,依据以往总结的凤.太矿田铅锌、金矿聚矿构造模式,通过对八方山-二里河铅锌矿床地质特征的分析,总结了找矿标志,初步认为八方山-二里河(铜)铅锌矿床的成矿模式为:“前泥盆纪海底热水喷流沉积一印支-燕山期构造改造型”铅锌矿床。认为成矿物质来源于基底,后期的构造-岩浆改造使基底成矿元素活化,沿同生断裂迁移、改造,最后在泥盆系中形成的扩容性构造部位富集成矿。提出了下一步扩大找矿的方向和建议。  相似文献   
154.
Lineament extraction and analysis is one of the routine work in mapping medium and large areas using remote sensing data, most of which are satellite images. Landsat Enhanced Thematic Mapper (ETM) of 945×1 232 pixels subscene acquired on 21 March 2000 covering the northwestern part of Yunnan Province has been digitally processed using ER Mapper software. This article aims to produce lineament density map that predicts favorable zones for hydrothermal mineral occurrences and quantify spatial associations between the known hydrothermal mineral deposits. In the process of lineament extraction a number of image processing techniques were applied. The extracted lineaments were imported into MapGIS software and a suitable grid of 100 m×100 m was chosen. The Kriging method was used to create the lineament density map of the area. The results show that remote sensing data could be useful to extract the lineaments in the area. These lineaments are closely correlated with the faults obtained through other geological investigation methods. On comparing with field data the lineament-density map identifies two important high prospective zones, where large-scale deposits are already existing. In addition the map highlights unrecognized target areas that require follow up investigation.  相似文献   
155.
During the DY105-12, 14cruise (R/V DAYANG YIHAO, November 2003) on East Pacific Rise (EPR) 12- 13°N, the submarine hydrothermal activity was investigated and the CTD hydrocast was carried out at EPR12°39′N-12°54′N. From the temperature anomalies and the concentrations of magnesium, chlorine, bromine in seawater samples, we discover that magnesium depletes 9.3%-22.4%, chlorine and bro- mine enrich 10.3%-28.7% and 10.7%-29.0% respectively relative to normal seawater at the stations which have chemistry anomalies, moreover temperature and chemistry anomalies are at the same layer. The depletion of magnesium in the plume may be caused by a fluid lacking of magnesium which rises after the hydrothermal fluid reaches the equilibrium with ambient seawater, the enrichment of chlorine and bromine might be the result of inputting later brine which is generated by phase separation due to hydrothermal activity. In addition, the Br/Cl ratio in the abnormal layers at the survey area is identical to that in seawater, which implies that halite dissolution (or precipitation) occurs neither when the fluid is vented nor when hydrothermal fluid entraining ambient seawater rises to form plume. From the ab- normal instance at E55 station, it is very possible that there might exist a new hydrothermal vent site.  相似文献   
156.
北秦岭二郎坪群中存在与地层整合产出的层状重晶石岩和铜多金属矿床。重晶石岩贫Al2O3、TiO2组分含量;富集热液组分As、Sb、Ba、Ag和Hg;微量元素U/Th>1;低ΣREE(平均值27.78×10-6)、富集轻稀土(LREE)、亏损重稀土(HREE)、具明显Eu正异常、Ce负异常及与大西洋TAG热液区热液沉积物相似的球粒陨石标准化的稀土元素配分模式特征。这些特征揭示研究区重晶石岩是热水沉积成因型。热水沉积重晶石岩与铜多金属矿床的紧密联系说明,研究区铜金属矿床是海底热液喷流沉积成岩成矿作用的产物。  相似文献   
157.
To characterize the hydrothermal processes of East Pacific rise at 9°-10°N, sulfide mineral compositions, textural, and geochemical features of chimney ores were studied using ore microscope,scanning electron microscope, X-ray diffraction analysis, and electron microprobe techniques. Results show that there are three mineral assemblages for the hydrothermal chimney ores, namely:(i) anhydrite + marcasite + pyrite, (ii) pyrite + sphalerite + chalcopyrite, and (iii) chalcopyrite + bornite + digenite + covellite. Mineral assemblages, zonational features, and geochemical characteristics of the ore minerals indicate that ore fluid temperature changed from low to high then to low with a maximum temperature up to 400 ℃. The chimney is a typical black smoker. The initial structure of the chimney was formed by the precipitation of anhydrites, and later the sulfides began to precipitate in the inner wall.  相似文献   
158.
Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran   总被引:1,自引:1,他引:1  
The Qolqoleh gold deposit is located in the northwestern part of the Sanandai‐Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile–brittle shear zones generated during Late Cretaceous–Tertiary continental collision between the Afro‐Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano‐sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore‐controlling structure is NE–SW‐trending oblique thrust with vergence toward south ductile–brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal–plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au‐bearing highly deformed and altered mylonitic host rocks and cross‐cutting Au‐ and sulfide‐bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz–sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz–sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross‐cutting Au‐quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite–chlorite alteration zone that may be taken to imply wall‐rock interaction with near neutral fluids (pH 5–6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide‐bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore‐forming stages have proved that the Qolqoleh deposit was formed in the compression–extension stage during the Late Cretaceous–Tertiary continental collision in a ductile–brittle shear zone, and is characterized by orogenic gold deposits.  相似文献   
159.
The extensive Changba-Lijiagou Pb-Zn deposit is located in the north of the Xihe–Chengxian ore cluster in West Qinling. The ore bodies are mainly hosted in the marble, dolomitic marble and biotite-calcite-quartz schist of the Middle Devonian Anjiacha Formation, and are structurally controlled by the fault and anticline. The ore-forming process can be divided into three main stages, based on field geological features and mineral assemblages. The mineral assemblages of hydrothermal stage I are pale-yellow coarse grain, low Fe sphalerite, pyrite with pits, barite and biotite. The mineral assemblages of hydrothermal stage II are black-brown cryptocrystalline, high Fe shalerite, pyrite without pits, marcasite or arsenopyrite replace the pyrite with pits, K-feldspar. The features of hydrothermal stage III are calcite-quartz-sulfide vein cutting the laminated, banded ore body. Forty-two sulfur isotope analyses, twenty-five lead isotope analyses and nineteen carbon and oxygen isotope analyses were determined on sphalerite, pyrite, galena and calcite. The δ34 S values of stage I(20.3 to 29.0‰) are consistent with the δ34 S of sulfate(barite) in the stratum. Combined with geological feature, inclusion characteristics and EPMA data, we propose that TSR has played a key role in the formation of the sulfides in stage I. The δ34 S values of stage II sphalerite and pyrite(15.1 to 23.0‰) are between sulfides in the host rock, magmatic sulfur and the sulfate(barite) in the stratum. This result suggests that multiple S reservoirs were the sources for S2-in stage II. The δ34 S values of stage III(13.1 to 22‰) combined with the structure of the geological and mineral features suggest a magmatic hydrothermal origin of the mineralization. The lead isotope compositions of the sulfides have 206 Pb/204 Pb ranging from 17.9480 to 17.9782, 207 Pb/204 Pb ranging from 15.611 to 15.622, and 208 Pb/204 Pb ranging from 38.1368 to 38.1691 in the three ore-forming stages. The narrow and symmetric distributions of the lead isotope values reflect homogenization of granite and mantle sources before the Pb-Zn mineralization. The δ13 CPDB and δ18 OSMOW values of stage I range from-0.1 to 2.4‰ and from 18.8 to 21.7‰. The values and inclusion data indicate that the source of fluids in stage I was the dissolution of marine carbonate. The δ13 CPDB and δ18 OSMOW values of stage II range from-4 to 1‰ and from 12.3 to 20.3‰, suggesting multiple C-O reservoirs in the Changba deposit and the addition of mantle-source fluid to the system. The values in stage III are-3.1‰ and 19.7‰, respectively. We infer that the process of mineralization involved evaporitic salt and sedimentary organic-bearing units interacting through thermochemical sulfate reduction through the isotopic, mineralogy and inclusion evidences. Subsequently, the geology feature, mineral assemblages, EPMA data and isotopic values support the conclusion that the ore-forming hydrothermal fluids were mixed with magmatic hydrothermal fluids and forming the massive dark sphalerite, then yielding the calcite-quartz-sulfide vein ore type at the last stage. The genesis of this ore deposit was epigenetic rather than the previously-proposed sedimentary-exhalative(SEDEX) type.  相似文献   
160.
根据铜厂铜矿床辉钼矿ReOs同位素模式年龄和黄铜矿RbSr同位素等时线年龄分别为889Ma和359Ma,并依据其地质特征和与铜厂岩体之间时空关系,认为早期铜矿化发生在889Ma左右,与铜厂岩体岩浆期后热液有关;晚期铜矿化则发生在359Ma左右,是伴随区域动力变质作用发生的;其矿质来源研究表明既有来自围岩的,又有来自岩体本身的;包裹体测温资料表明成矿温度集中在两个区间:高温大于300℃,低温150~200℃。该矿床为多期、复源、多种成矿作用叠加复合的产物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号