首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   21篇
  国内免费   33篇
地球物理   30篇
地质学   145篇
海洋学   4篇
综合类   6篇
自然地理   2篇
  2024年   2篇
  2023年   5篇
  2022年   7篇
  2021年   10篇
  2020年   11篇
  2019年   8篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   1篇
  2013年   8篇
  2012年   9篇
  2011年   3篇
  2010年   5篇
  2009年   7篇
  2008年   9篇
  2007年   5篇
  2006年   11篇
  2005年   10篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   8篇
  2000年   8篇
  1999年   1篇
  1998年   4篇
  1997年   4篇
  1996年   6篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
排序方式: 共有187条查询结果,搜索用时 15 毫秒
141.
中国南方海相地层油气保存条件综合评价技术体系探讨   总被引:47,自引:7,他引:47  
中国南方海相地层的油气藏分别在加里东、印支和燕山期经历了多期多阶段的演变过程,被构造活动改造的强度大。油气保存条件破坏严重,且缺乏有效的评价方法。本文试图通过研究地下流体的化学-动力学行为规律,从动态和演化的角度分析剥蚀作用、断裂-破碎作用、大气水下渗作用等对油气藏破坏的程度、方式,综合评价油气的成藏、保存条件,探索针对南方海相地层油气保存条件评价的技术体系。  相似文献   
142.
针对煤矿水文地质勘探过程中存在的水文地球化学异常问题,以蒙陕矿区侏罗系含水层为研究对象,开展了水化学异常原因分析和判别标准构建,结果表明:勘探过程中以\  相似文献   
143.
汪洋  张旭虎  蒲丛林  郭辉  王锦彪  刘超 《地质通报》2022,41(9):1698-1706
地热资源的开发利用带来了良好的经济效益和社会价值, 但不合理地开发利用地热资源, 会对地表水及浅层地下水造成重大污染。通过水化学分析和水文地球化学模拟手段, 分析了廊坊南部地区地下热水水化学特征及水质的成因机制。研究表明:新近系孔隙热储中, 明化镇组热储地下热水主要水化学类型为HCO3-Na型、HCO3·Cl-Na型;馆陶组热储地下热水水化学类型以Cl-Na型、Cl·HCO3-Na型为主, 该层水力联系较好, 地热水径流区内主要水岩作用为硫酸盐、硅酸盐矿物的溶解作用, 以及阳离子交替吸附作用。基岩裂隙热储地下热水水化学类型为Cl-Na型, 该层水力联系较弱, 阳离子交替吸附作用是水化学演化的主要水岩相互作用。基于PHREEQC的水文地球化学定量模拟, 揭示了地质背景、水文地质条件及人类活动因素共同控制的地下热水的流场和水岩相互作用的程度, 在研究廊坊地区地热水水化学演化机理及地热水动态特征方面具有一定的意义。  相似文献   
144.
岩浆热源型地热系统及其水文地球化学判据   总被引:2,自引:0,他引:2  
郭清海 《地质学报》2020,94(12):3544-3554
在各类地热系统中,岩浆热源型地热系统具有突出的科学研究意义和开发利用价值。自岩浆热源释出的岩浆流体富含多种强酸性气体,有极强的岩石溶蚀能力,是发生于岩浆热源型地热系统内的水文地球化学过程大异于非岩浆热源型地热系统的根本原因。浅埋或深埋岩浆热源型地热区内均普遍发育三种不同类型的地热水:酸性SO4型、SO4-Cl型或Cl-SO4型水,中性Cl-Na型或Cl-HCO3-Na型水,弱碱性HCO3-Cl-Na型或HCO3-Na型水;是否同时出现以上类型地热水也成为以非碳酸盐岩为热储围岩的水热型地热系统是否具有岩浆热源的水文地球化学判据。在中国,藏南-滇西地热带和台湾地热带是岩浆热源型地热系统集中分布的区域;藏南高原的高温水热型地热系统下的岩浆囊可能是地壳增厚过程中发生局部熔融的结果,也可能与印度大陆岩石圈向北消减后在拉萨地体下形成的近东西向地幔楔的上涌有关。  相似文献   
145.
川藏铁路康定隧址区穿越鲜水河断裂带,属地热异常区,对铁路建设造成一定的热害威胁。采用野外调查、水化学分析和氢氧同位素测试等技术方法,开展了川藏铁路康定隧址区地热水成因研究。结果表明,康定隧址区地热水水化学类型主要为HCO3·Cl—Na和HCO3—Na型,聚集于折多塘、康定和中谷3个热水区。地热水均为未成熟水,热储温度为104~172 ℃,深部初始地热水温度为186~250 ℃,冷水混合比例为0.56~0.81。氢氧同位素显示地热水补给高程为3768~4926 m。在康定隧址区,地热水受到高海拔水源补给,主体断裂构造为导热构造,次级分支断裂和发育节理、裂隙的断层破碎带为导水构造,地热水形成后沿浅部断层破碎带出露形成温泉。FEFLOW数值模拟分析表明研究区100 m深度地温场温度为35.4~95.1 ℃,研究区内三个热水区之间存在低温通道。隧道建设时应重点关注康定热水区的高温水热灾害。  相似文献   
146.
纳林河二号煤矿作为纳林河矿区的第一对大型矿井,生产初期由于其自身复杂的水文地质条件和采掘的强扰动,导致涌水事件时有发生,给矿井的安全生产造成严重威胁,快速有效地找到涌水水源是防治矿井水害的关键。通过对纳林河二号煤矿主要含水层及采空区水样进行水质分析并绘制Piper三线图,揭示矿区各含水层地下水及采空区水的水化学特征,统计Ca2+、Mg2+、Na++K+、HCO3-、Cl-、SO42-、pH和矿化度8个指标作为水源判别的原始数据,经主成分分析法(PCA)处理得到4个主成分F1F2F3F4;将4个主成分的值作为Logistic回归模型的判别指标,建立纳林河矿区涌水水源判别模型;以36组标准水样作为训练样本,发现模型回代准确率为97.22%,再利用建立的模型对4组待判水样进行判别,结果与实际分析相符。研究结果表明:主成分分析和无序多分类Logistic回归方法相结合的涌水水源判别模型能够有效消除样本原始数据间的冗余信息,使涌水水源判别结果更加快速准确,可为矿井防治水工作提供决策和依据。移动阅读  相似文献   
147.
奥陶纪灰岩(简称奥灰)水是保德煤矿煤层开采的主要威胁水源,且为主要供水水源之一。为研究保德煤矿奥灰水水化学特征,并分析其形成机理,对保德煤矿区奥灰水进行系统取样,综合运用相关性分析、离子比例系数、饱和指数反演、氯碱指数等方法进行分析。研究结果表明:奥灰水的水质类型从径流区到滞流区呈HCO3-Na(Na·Ca)→HCO3·Cl-Na·Ca(Ca·Mg)→Cl-Na(Na·Ca)的变化趋势,各离子质量浓度与TDS值呈线性关系,除HCO3-外,其余离子质量浓度均与TDS值呈正相关;阳离子交替吸附、BSR反应、溶滤沉析作用是控制矿区地下水化学环境的主要作用。根据饱和指数(SI)计算及路径模拟结果证实,径流区方解石、白云石和石膏大量溶解,滞流区出现白云石沉淀,石膏始终处于不饱和状态,趋于发生溶解。该结论可为保德煤矿深部煤炭开采水害防治与矿井水利用提供依据。  相似文献   
148.
彭凯  刘文  魏善明  刘传娥  陈燕  董浩  苏动  袁炜  韩琳 《中国岩溶》2020,39(5):650-657
文章利用水化学、2H、18O同位素、87Sr/86Sr比值、13C和14C同位素对济南岩溶地下水补给来源、地热水补给来源进行研究。结果表明,岩溶冷水水化学类型以HCO3-Ca、HCO3·SO4-Ca型为主、地热水以SO4-Ca型为主。在旱季,间接补给区对泉群地下水补给比率在66.00%~73.58%之间,直接补给区仅占到26.42%~34.00%,旱季泉水的主要来源为间接补给区岩溶地下水。地热水受到了更新世以来的降水补给,是不同时期降水补给所形成的混合地下水,接受补给区域应为高程较高的张夏或者炒米店-三山子组地层,补给高程在350~550 m之间。  相似文献   
149.
四川盆地某地富矿卤水以深层卤水形式赋存于地下4000余米深的中三叠统雷口坡组四段(T2l4)盐系的碳酸盐岩储层中。富矿卤水与海水各浓缩阶段相比,其中K+含量异常高,构成世界罕见的液态钾盐资源;Br-、I-、B3+、Li+等有用组分也远远超过综合利用工业品位,为优质化工原料水.富矿卤水为沉积变质和钾盐溶滤的复合成因,具有资源及固液态钾盐找矿的指示意义。本文为四川某地固液态找钾提供了有价值的线索。  相似文献   
150.
章旭  郝红兵  刘康林  毛武林  肖尧  张文 《中国地质》2020,47(6):1702-1714
通过沃卡地堑盆地地下热水水文地球化学特征研究,进行热储温度、补给高程计算,建立沃卡地堑地下热水系统中-高温地热概念模型。结果表明,沃卡温泉为中偏碱性水,溶解性总固体较低,水化学类型主要为SO4-Na型、SO4·Cl-Na型、HCO3·SO4-Na型。热水水文地球化学特征表明,沃卡盆地地下热水系统具有大气降水补给、浅循环地下水的特征,热水以深部熔融体为热源,受控于沃卡半隐伏控热断裂构造,但受裂隙潜水或地表冷水的混合作用,其Na-K-Mg平衡图表现为部分平衡或混合水。利用混合模型对热储真实温度进行估算,得到热储的温度范围为120~200℃,冷水混入比例为70%~83%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号