首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6405篇
  免费   1133篇
  国内免费   1231篇
测绘学   408篇
大气科学   338篇
地球物理   507篇
地质学   4430篇
海洋学   1016篇
天文学   14篇
综合类   600篇
自然地理   1456篇
  2024年   18篇
  2023年   93篇
  2022年   215篇
  2021年   280篇
  2020年   235篇
  2019年   302篇
  2018年   227篇
  2017年   234篇
  2016年   268篇
  2015年   270篇
  2014年   326篇
  2013年   323篇
  2012年   322篇
  2011年   379篇
  2010年   339篇
  2009年   364篇
  2008年   357篇
  2007年   396篇
  2006年   434篇
  2005年   386篇
  2004年   403篇
  2003年   335篇
  2002年   322篇
  2001年   300篇
  2000年   267篇
  1999年   236篇
  1998年   213篇
  1997年   159篇
  1996年   170篇
  1995年   124篇
  1994年   104篇
  1993年   91篇
  1992年   61篇
  1991年   65篇
  1990年   42篇
  1989年   27篇
  1988年   21篇
  1987年   12篇
  1986年   13篇
  1985年   10篇
  1984年   7篇
  1983年   6篇
  1982年   9篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有8769条查询结果,搜索用时 296 毫秒
251.
虚拟现实和G IS系统集成方法分析   总被引:1,自引:0,他引:1  
从三个角度论述虚拟现实(V irtua l R ea lity,VR)和地理信息系统(G IS)集成的必要性,通过对集成方法的归纳,提出4种集成方式,并详细介绍了各自的结构体系和具体特征。在此基础上划分了VR与G IS系统集成的4个阶段,分析当前系统集成现状,指出其发展趋势。同时探讨了VR和G IS系统集成中存在的关键问题,包括数据、虚拟景观技术、VRG IS网络化等,给出目前解决这些问题的一些建议和具体途径。  相似文献   
252.
253.
Yong Zha  Jay Gao  Ying Zhang 《Area》2005,37(3):332-340
Situated in a climatically stressful environment, alpine grassland is sensitive to subtle climate changes in its productivity. We remedy the current deficiency in studying grassland productivity by taking the integrated effect of all relevant factors into consideration. The relative importance of temperature, rainfall and evaporation to the alpine grassland productivity in western China was determined through analysis of their relationship with the normalized difference vegetation index (NDVI) between 1981 and 2000. Climate warming stimulated grassland productivity in the 1980s, but hampered it in the 1990s. Temperature is more important than rainfall to grassland productivity early in the growing season. However, their relative importance is reversed late in the growing season. Monthly summer month rainfall modified by maximum monthly temperature is a good predictor of alpine grassland productivity at 62.0 per cent. However, the best predictor is water deficiency, which is able to improve the estimation accuracy to 78.3 per cent. Hence, the impact of temperature on grassland productivity is better studied indirectly through evaporation.  相似文献   
254.
Lacustrine environments are an excellent indicator of continental palaeoclimate. In particular, the sedimentary record of waves in lakes may be used to constrain atmospheric palaeocirculation. Wave ripples have been identified in a Permian lacustrine basin (the Salagou Formation, 260–250 Ma, Lodève Basin) located in the southern French Massif Central, part of the western European Hercynian mountain chain. Wave ripple patterns are interpreted with regards to hydrodynamics and water palaeodepth. It is shown that, in the case of the Salagou Formation, wave ripple orientations were controlled by the direction of the prevailing palaeowind. The Late Permian wind blew from between north and 20° east of north, possibly over several millions of years and certainly throughout the period of deposition of about 2000 m of strata in the Lodève Basin. Permian lacustrine sedimentation is widespread and well preserved on the Earth's surface and so wave ripple data may help constrain numerical modelling of the Earth's past climates, especially with regards to Permian times outside of desert regions.  相似文献   
255.
张长敏 《城市地质》2005,17(1):30-33
在论述地质环境与北京城市建设关系和分析北京地区地质环境特点的基础上,提出城市建设与保护地质环境的个人建议。  相似文献   
256.
运用MALVERN公司2000型粒度仪对珠江三角洲地区的江村ZK2钻孔作粒度分析,江村钻孔按粒度的偏态值可划分为两个河相与海相或湖泊沼泽相的沉积交替过程,同时与粒度参数、年代数据以及前人所做的孢粉等证据相结合,大致看出研究区气候变化的4个千年尺度的气候波动:第一阶段为较长时间的冷干期,该段时间约为20-10.7kaB.P.;第二阶段为回暖期,时间大致在10.7-7.5kaB.P.,总体比较湿润;第三阶段为升温期,该时期约在7.5-5kaB.P.之间,在此期间各有一次干湿交替;第四阶段为降温期,时间大约出现在5kaB.P.至今,这是一个波动性较大的时期,也各有一次干湿交替。  相似文献   
257.
2003年“雪龙号”北极科学考察期间,对沿途海洋大气进行采样,分析其中气相多环芳烃的空间分布。结果显示,气相中主要是2-4环的多环芳烃,其中菲为主要的化合物,平均占到总多环芳烃的55.1%。在整个航程的广泛区域尺度内,气相总多环芳烃浓度在1043.9-92993.1pg/m3。空间分布上,远东亚的海面>北太平洋海面>北极圈以内海面;总多环芳烃的浓度随纬度升高呈现显著降低的趋势。通过Clausius-Clapeyron方程对浓度和温度相互关系的分析表明,温度是控制气相多环芳烃长距离传输的主要因素。  相似文献   
258.
In this work, the possible exploitation of fiber-reinforced composites in the context of maritime transportation of compressed natural gas (CNG) is investigated. In addition to a more conventional steel configuration, two different fiber materials, carbon and glass, are considered as construction materials for pressure vessels (PVs) to be stored on board ships, with thickness optimized by FEM analysis.The considered scenario is represented by the transportation of CNG from an offshore well to a terminal on shore. Fleets of ships carrying CNG in pressure vessels manufactured with the investigated materials are generated by means of a ship synthesis model (SSM) software and compared on the basis of technical and economical indicators.The choice of the construction material influences considerably the weight of the PVs, which represent a major item of total ship weight and reflects directly on the general transport performances in terms of resistance, seakeeping and reliability in the service. On the other hand, capital as well as operating expenditures are considerably affected by the choice. When exploring the design space, the ship synthesis model is able, at a preliminary stage of the design, to account for the various technical and economical aspects, their implications and relationships. Results are presented of computations carried out in a specific case, identified by the annual gas production and other characteristics of the well terminal and a cruising route for the ships. The comparison is carried out on the basis of the cost per transported unit of gas and of the percentage of success in the transportation process. The computations show that the choice of the PV material has a key influence on the results in terms of optimal number, dimensions and speed of the ships.  相似文献   
259.
Salinity and periodic inundation are both known to have a major role in shaping the ecohydrology of mangroves through their controls on water uptake, photosynthesis, stomatal conductance, gas exchanges, and nutrient availability. Salinity, in particular, can be considered one of the main abiotic regulating factors for halophytes and salt‐tolerant species, due to its influence on water use patterns and growth rate. Ecohydrological literature has rarely focused on the effects of salinity on plant transpiration, based on the fact that the terrestrial plants mostly thrive in low‐saline, unsaturated soils where the role of osmotic potential can be considered negligible. However, the effect of salinity cannot be neglected in the case of tidal species like mangroves, which have to cope with hyperosmotic conditions and waterlogging. We introduce here a first‐order ecohydrological model of the soil/plant‐atmosphere continuum of Avicennia marina—also known as gray mangrove—a highly salt‐tolerant pioneer species able to adapt to hyperarid intertidal zones and characterized by unique morphological and ecophysiological traits. The A. marina's soil‐plant‐atmosphere continuum takes explicitly into account the role of water head, osmotic water potential, and water salinity in governing plant water fluxes. A. marina's transpiration is thus modeled as a function of salinity based on a simple parameterization of salt exclusion mechanisms at the root level and a modified Jarvis' expression accounting for the effects of salinity on stomatal conductance. Consistently with previous studies investigating the physiology of mangroves in response to different environmental drivers, our results highlight the major influence of salinity on mangrove transpiration when contrasted with other potential stressors such as waterlogging and water stress.  相似文献   
260.
This study has investigated the use of the artificial sweetener acesulfame and the magnetic resonance imaging contrast agent gadolinium as quantitative tracers for river water infiltration into shallow groundwater. The influence of a river on alluvial groundwater in a subalpine catchment in western Europe has been assessed using the ‘classical’ hydrochemical tracer chloride and the trace contaminants acesulfame and anthropogenic gadolinium. Mixing ratios for riverine bank filtrate with ambient groundwater and the uncertainties associated with the temporal and spatial tracer variability were calculated using acesulfame and gadolinium and compared with those obtained using chloride. The temporal variability of tracer concentrations in river water of gadolinium (standard deviation SD: 63%) and acesulfame (SD: 71%) both exceeded that of chloride (SD: 27%), and this was identified as the main source of uncertainty in the mixing analysis. Similar spatial distributions were detected in the groundwater for chloride and gadolinium, but not for acesulfame. Mixing analyses using acesulfame resulted in calculated mixing ratios that differed from those obtained using gadolinium and chloride by up to 83% and 92%, respectively. At the investigated site, which had oxic conditions and moderate temperatures, acesulfame was found to be a less reliable tracer than either gadolinium or chloride, probably because of natural attenuation and input from other sources. There was no statistically significant difference between the mixing ratios obtained using chloride or gadolinium, the mixing ratios obtained using gadolinium were 40–50% lower than those obtained using chloride. This is mainly due to a bias of the mean gadolinium concentration in river water towards higher values. In view of the uncertainties of the two tracers, neither could be preferred over the other for the quantification of bank filtrate in groundwater. At this specific site gadolinium was able to reliably identify river water infiltration and was a more precise tracer than chloride at low mixing ratios (<20%), because of the exclusive occurrence of gadolinium in river water and its high dynamic range. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号