首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   875篇
  免费   124篇
  国内免费   174篇
测绘学   10篇
大气科学   341篇
地球物理   165篇
地质学   91篇
海洋学   217篇
天文学   302篇
综合类   25篇
自然地理   22篇
  2024年   4篇
  2023年   9篇
  2022年   11篇
  2021年   16篇
  2020年   18篇
  2019年   38篇
  2018年   10篇
  2017年   22篇
  2016年   14篇
  2015年   24篇
  2014年   28篇
  2013年   70篇
  2012年   34篇
  2011年   38篇
  2010年   28篇
  2009年   71篇
  2008年   70篇
  2007年   69篇
  2006年   65篇
  2005年   53篇
  2004年   59篇
  2003年   50篇
  2002年   43篇
  2001年   53篇
  2000年   40篇
  1999年   48篇
  1998年   49篇
  1997年   24篇
  1996年   18篇
  1995年   18篇
  1994年   33篇
  1993年   7篇
  1992年   11篇
  1991年   5篇
  1990年   4篇
  1989年   9篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1954年   1篇
排序方式: 共有1173条查询结果,搜索用时 62 毫秒
991.
Accurate wind and turbulence information are essential to wind energy research and utilization, among which wind shear and turbulence intensity/scale have seldom been investigated. In this paper, the observational data from the100-m high wind towers in Xilinhot in Inner Mongolia(2009–10; grassland region), Huanghua in Hebei Province(2009–10; coastal flat region), and Xingzi County in Jiangxi Province(2010–11; mountain–lake region) are used to study the variations in near surface winds and turbulence characteristics related to the development of local wind energy over different underlying surfaces. The results indicate that(1) the percentage of the observed wind shear exponents exceeding 0.3 for the grassland region is 6%, while the percentage is 13% for the coastal flat region and 10%for the mountain–lake region. In other words, if the wind speed at 10 m is 10 ms–1, the percentage of the wind speed at 100 m exceeding 20 ms–1 for the grassland region is 6%, while the percentage is 13% for the coastal flat region and 10% for the mountain–lake region.(2) In terms of the turbulent intensity in the zonal, meridional, and vertical directions(I_u, I_v, and I_w, respectively), the frequencies of I_v/I_u < 0.8 in the grassland, coastal flat, and mountain–lake regions are 23%–29%, 32%–38%, and 30%–37%, respectively. Additionally, the frequencies of I_w/I_u < 0.5 in the grassland, coastal flat, and mountain–lake regions are 45%–75%, 52%–70%, and 43%–53%, respectively. The frequencies of I_v/I_u < 0.8 and Iw/I_u < 0.5 in each region mean that I_u is large and the air flow is unstable and fluctuating,which will damage the wind turbines. Therefore, these conditions do not meet the wind turbine design requirements,which must be considered separately.(3) At 50-and 70-m heights, the value of the turbulence scale parameter Λ in the grassland region is greater than that in the coastal flat region, and the latter is greater than that in the mountain–lake region. Therefore, under the same conditions, some parameters, e.g., the extreme directional change and extreme operating gust at the hub height in the grassland region, are greater than those in the coastal flat region,which are greater than those in the mountain–lake region. These results provide a reference for harnessing local wind energy resources and for the selection and design of wind turbines.  相似文献   
992.
El Niño is a phenomenon of the catastrophic increase of surface temperature in the eastern part of the Pacific Ocean. It has a significant impact to weather of the American continent and western regions of the tropical Pacific, as well as on the weather and climate of entirely the Earth. Most important factors influencing El Niño are the wind, ocean currents and slope of the water surface (and temperature resulting from these factors) at the equator in the Pacific Ocean. The paper considers results of mathematical modeling of the equatorial Pacific Ocean currents in the El Niño and La Niña phases using the theory of mesoscale turbulence. This theory has been successfully tested in modeling of global circulation of atmosphere and ocean (Arsen’yev et al., 2010) and it has been able to calculate the ocean current changes at equator under changing external conditions. It is shown that the water currents at the equator have a four-tier vertical structure. The surface trade-wind current is located above the subsurface undercurrent, below which we observe the intermediate current, turning into the equatorial deep counter flow. When El Niño begins, the currents are rearranged, change signs and sometimes merge with each other. In the phase of maximum development of the phenomenon there is a two-tier structure: (1) surface current heading the American coast is underlain (below the depth of 440 m) by (2) deep equatorial current directed to the Indonesian coast. The theoretical calculations are compared with the physical observations of ocean currents in the El Niño and La Niña phases. The obtained results indicate that the proposed mathematical apparatus makes it possible to explain the set of physical observations in the Pacific Ocean.  相似文献   
993.
利用传感器成像时刻对应的观测区域气象参数,结合大气光学湍流参数化模型和气溶胶MTF估计模型,分别计算湍流MTF和气溶胶MTF,再由二者的乘积得到大气MTF,进而采用一种改进的维纳滤波算法实现遥感影像的大气模糊去除。实验结果证明,恢复后影像的客观评价指标以及主观视觉效果均有明显改善,验证了本文算法的有效性和可行性。  相似文献   
994.
INTRODUCTIONThewesternboundarycurrents(WBC),counterundercurrentsobservedbelowthethermoclineincludetheMindanaoUndercurrent(MUC)beneaththeMindanaoCurrent(MC)(HuandCui,1989,1991;WangandHu,1998a,b;Wangetal.,1998)(Fig.1a),thesouthwardflowbelowtheKuroshio(hereinafter,KUC)(Huan…  相似文献   
995.
利用Argo浮标资料分析横跨吕宋海峡20.5°N断面的水文特征   总被引:2,自引:0,他引:2  
黄志达  胡建宇 《台湾海峡》2010,29(4):539-546
基于Argo浮标资料,分析了一条横跨南海北部、吕宋海峡和西太平洋(20.5°N,114°~130°E)断面的海水温度、盐度的分布特征.其结果表明:Argo剖面资料得到的2008年秋季20.5°N断面海水的温度、盐度分布态势与气候态秋季的分布基本一致,主要差异在于南海次表层水的盐度极大值和西太平洋次表层水的盐度极大值,2008年秋季二者均比气候态秋季的低0.1左右.通过动力计算(选取1 200 m为速度零面)表明:Argo浮标剖面资料与融合的卫星高度计产品得到的20.5°N,117.5°~124.5°E断面的表层地转流北分量的分布比较吻合;吕宋海峡中部(20°~21°N)的黑潮主轴大致位于121.5°E附近,其东边界可达123°E,而西边界仅限于121°E以西,其可能原因是该季节黑潮的左侧存在着一个气旋式环流,阻碍了黑潮西进;黑潮在20.5°N断面的体积流量为27×106m3/s左右,最大流速约为55 cm/s,出现在70 m层左右.  相似文献   
996.
Hydrodynamics and sediment transport in the nearshore zone were modeled numerically taking into account turbulent unsteady flow. The flow field was computed using the Reynolds Averaged Navier–Stokes equations with a kε turbulence closure model, while the free surface was tracked using the Volume-Of-Fluid technique. This hydrodynamical model was supplemented with a cross-shore sediment transport formula to calculate profile changes and sediment transport in the surf and swash zones. Based on the numerical solutions, flow characteristics and the effects of breaking waves on sediment transport were studied. The main characteristic of breaking waves, i.e. the instantaneous sediment transport rate, was investigated numerically, as was the spatial distribution of time-averaged sediment transport rates for different grain sizes. The analysis included an evaluation of different values of the wave friction factor and an empirical constant characterizing the uprush and backwash. It was found that the uprush induces a larger instantaneous transport rate than the backwash, indicating that the uprush is more important for sediment transport than the backwash. The results of the present model are in reasonable agreement with other numerical and physical models of nearshore hydrodynamics. The model was found to predict well cross-shore sediment transport and thus it provides a tool for predicting beach morphology change.  相似文献   
997.
Climate change redistributes turbulence in both space and time, adding urgency to understanding of turbulence effects. Many analytic and analog models used to simulate and assess effects of turbulence on plankton rely on simple Couette flow. There shear rates are constant and spatially uniform, and hence so is vorticity. Over the last decade, however, turbulence research within fluid dynamics has focused on the structure of dissipative vortices in space and time. Vorticity gradients, finite net diffusion of vorticity and small radii of curvature of streamlines are ubiquitous features of turbulent vortices at dissipation scales but are explicitly excluded from simple, steady Couette flows. All of these flow components contribute instabilities that cause rotation of particles and so are important to simulate in future laboratory devices designed to assess effects of turbulence on nutrient uptake, particle coagulation, motility and predator‐prey encounter in the plankton. The Burgers vortex retains these signature features of turbulence and provides a simplified “cartoon” of vortex structure and dynamics that nevertheless obeys the Navier‐Stokes equations. Moreover, this idealization closely resembles many dissipative vortices observed in both the laboratory and the field as well as in direct numerical simulations of turbulence. It is simple enough to allow both simulation in numerical models and fabrication of analog devices that selectively reproduce its features. Exercise of such numerical and analog models promises additional insights into mechanisms of turbulence effects on passive trajectories and local accumulations of both living and nonliving particles, into solute exchange with living and nonliving particles and into more subtle influences on sensory processes and swimming trajectories of plankton, including demersal organisms and settling larvae in turbulent bottom boundary layers. The literature on biological consequences of vortical turbulence has focused primarily on the smallest, Kolmogorov‐scale vortices of length scale η. Theoretical dissipation spectra and direct numerical simulation, however, indicate that typical dissipative vortices with radii of 7η to 8η, peak azimuthal speeds of order 1 cm s?1 and lifetimes of order 10 s or longer (and much longer for moderate pelagic turbulence intensities) deserve new attention in studies of biological effects of turbulence.  相似文献   
998.
In this review paper, state-of-the-art observational and numerical modeling methods for small scale turbulence and mixing with applications to coastal oceans are presented in one context. Unresolved dynamics and remaining problems of field observations and numerical simulations are reviewed on the basis of the approach that modern process-oriented studies should be based on both observations and models. First of all, the basic dynamics of surface and bottom boundary layers as well as intermediate stratified regimes including the interaction of turbulence and internal waves are briefly discussed. Then, an overview is given on just established or recently emerging mechanical, acoustic and optical observational techniques. Microstructure shear probes although developed already in the 1970s have only recently become reliable commercial products. Specifically under surface waves turbulence measurements are difficult due to the necessary decomposition of waves and turbulence. The methods to apply Acoustic Doppler Current Profilers (ADCPs) for estimations of Reynolds stresses, turbulence kinetic energy and dissipation rates are under further development. Finally, applications of well-established turbulence resolving particle image velocimetry (PIV) to the dynamics of the bottom boundary layer are presented. As counterpart to the field methods the state-of-the-art in numerical modeling in coastal seas is presented. This includes the application of the Large Eddy Simulation (LES) method to shallow water Langmuir Circulation (LC) and to stratified flow over a topographic obstacle. Furthermore, statistical turbulence closure methods as well as empirical turbulence parameterizations and their applicability to coastal ocean turbulence and mixing are discussed. Specific problems related to the combined wave-current bottom boundary layer are discussed. Finally, two coastal modeling sensitivity studies are presented as applications, a two-dimensional study of upwelling and downwelling and a three-dimensional study for a marginal sea scenario (Baltic Sea). It is concluded that the discussed methods need further refinements specifically to account for the complex dynamics associated with the presence of surface and internal waves.  相似文献   
999.
风荷载是影响海洋结构物设计和安全服役最为显著的环境因素之一。利用在役海洋平台监测系统对渤海风速场展开长期监测,获得了长期的风速信息。对极值风速进行分析,利用极值Ⅰ、Ⅱ、Ⅲ型分布对风速极值的概率密度进行拟合。基于极值Ⅰ型概率分布,获得了渤海海域重现期为5 a、10 a、30 a和50 a的最大风速值。对年最大风速的脉动风分量、湍流强度、阵风因子进行了分析。考虑高频分量的影响,利用小波变换,得到了脉动风速的近似分量和细节分量,计算了实测风速的纵向和横向的空间积分尺度。对比经验脉动风谱与实测脉动风谱,证明了Davenport风速谱能够较好地拟合渤海现场风速场。  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号