全文获取类型
收费全文 | 5380篇 |
免费 | 1137篇 |
国内免费 | 1885篇 |
专业分类
测绘学 | 109篇 |
大气科学 | 380篇 |
地球物理 | 855篇 |
地质学 | 5482篇 |
海洋学 | 1024篇 |
天文学 | 75篇 |
综合类 | 250篇 |
自然地理 | 227篇 |
出版年
2024年 | 69篇 |
2023年 | 122篇 |
2022年 | 273篇 |
2021年 | 264篇 |
2020年 | 270篇 |
2019年 | 319篇 |
2018年 | 260篇 |
2017年 | 327篇 |
2016年 | 362篇 |
2015年 | 322篇 |
2014年 | 375篇 |
2013年 | 357篇 |
2012年 | 354篇 |
2011年 | 407篇 |
2010年 | 346篇 |
2009年 | 394篇 |
2008年 | 370篇 |
2007年 | 323篇 |
2006年 | 367篇 |
2005年 | 344篇 |
2004年 | 272篇 |
2003年 | 275篇 |
2002年 | 263篇 |
2001年 | 190篇 |
2000年 | 216篇 |
1999年 | 153篇 |
1998年 | 175篇 |
1997年 | 136篇 |
1996年 | 112篇 |
1995年 | 83篇 |
1994年 | 64篇 |
1993年 | 53篇 |
1992年 | 44篇 |
1991年 | 24篇 |
1990年 | 25篇 |
1989年 | 16篇 |
1988年 | 17篇 |
1987年 | 7篇 |
1986年 | 15篇 |
1985年 | 13篇 |
1984年 | 10篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1978年 | 5篇 |
1973年 | 1篇 |
1954年 | 1篇 |
排序方式: 共有8402条查询结果,搜索用时 15 毫秒
31.
微焦X射线扫描成像技术在岩石物性特征研究的现状 总被引:1,自引:0,他引:1
微焦X射线扫描成像技术是在微米—纳米级尺度上对储层岩石物性特征的重构及透视表征,是目前国际范围内较为先进的储层定性定量研究技术。在系统文献资料研究基础上,对微焦X射线扫描成像技术的原理及研究主要内容进行归纳总结,指出该技术是为研究岩石基质及赋存于不同岩石孔隙空间之中的流体而开发建立的不断成熟起来的油气储层定性定量研究技术。可以实现岩石整体、岩石骨架和孔隙三维重构,能够以透视岩心成像的方式直观清晰地观察分析岩石内部三维孔隙空间的分布、大小及其连通性。通过阈值分割,可对孔隙三维组构、孔隙网络中流体流动、天然气水合物生成与分解等特征进行建模分析,达到四维研究的水平。分析探讨了原理及前人研究实例,对其在油气和天然气水合物实际勘探开发运用中的现状及前景做出展望。 相似文献
32.
渤东凹陷东南斜坡构造变换带识别及其石油地质意义 总被引:3,自引:0,他引:3
根据渤东凹陷斜坡带新钻井以及新采集的三维地震等勘探资料,采用构造样式解剖、断裂分析以及油气成藏规律分析等方法研究构造变换带特征及其石油地质意义。结果表明,渤东凹陷东南斜坡带上存在构造变换带,此变换带具有调节局部构造变形和分割构造带的作用,把斜坡带分割为西、中、东3个整体呈NE向的似花状构造带。变换带对于明下段极浅水三角洲沉积体展布具有一定控制作用,是砂体形成岩性尖灭的有利场所,同时,近SN向变换断层对NEE向断裂的封堵易形成构造圈闭、构造—岩性圈闭,具有较大的勘探潜力。3个似花状构造带的南部3条断层的断面与地层呈顺向配置,形成断面汇聚脊到顺向地层的优势运移路径,同时受到南部呈雁行排列的密集断裂带的阻挡,形成了研究区一条似花状构造内部的优势运聚范围,最终在渤东凹陷东南斜坡带上形成密集断裂带横向遮挡的主控断层—地层产状耦合油气富集模式。 相似文献
33.
神狐海域与西沙海槽天然气水合物成藏模式对比 总被引:1,自引:0,他引:1
南海北部神狐海域与西沙海槽天然气水合物资源量丰富,但两地区天然气水合物成藏条件及成藏机制存在一定的差异。通过两海域水深、温度压力、气源、气体运移、储层等水合物成藏要素与成藏模式的分析对比,获取了3点新认识:①两地区海域水深、温压条件、气源类型、气体运移条件、水合物储层类型和成藏模式基本类似;②综合天然气水合物气源及供给运聚系统类型剖析,提出神狐海域主要以“自源与他源渗漏复合型”水合物成藏模式为主;③西沙海槽水合物成藏模式属典型的“他源渗漏型”。研究结果表明,落实气源与不同类型气体运移通道的时空耦合匹配关系是该区水合物勘探评价的关键。 相似文献
34.
南海北部天然气水合物勘查试采及研究进展与勘探前景 总被引:3,自引:0,他引:3
20世纪90年代中后期以来,南海北部天然气水合物勘查取得了丰硕的勘探成果和里程碑式的重大突破与进展。迄今为止,通过勘查评价已在南海北部圈定了两大天然气水合物成藏带及三大富集区,先后勘探发现了3个超千亿立方米储量规模的天然气水合物矿藏。同时,通过2017年和2020年2次探索性试采均获得了产气总量及日均产气量超世界新记录,而且攻克了深水海底浅表层未成岩软地层水平井钻采核心技术,实现了由“探索性试采向试验性试采”的重大跨越和突破。然而,南海天然气水合物资源勘查试采这一庞大复杂的系统工程,尚面临着诸多问题和挑战,如天然气水合物成因成藏类型与气源供给及产出赋存特点、天然气水合物成藏机理及主控因素、勘查试采技术方法优化创新与商业化产能目标的实现,以及天然气水合物可持续滚动勘探开发的战略选区及其资源/储量接替等,因此,南海天然气水合物资源勘查试采工程项目工作仍然非常艰巨且任重道远。 相似文献
35.
36.
37.
依据地热资料研究天然气水合物稳定带厚度在东海海域的分布情况。东海在地质构造上位于新生代环太平洋构造带西部边缘岛弧的内侧,又是欧亚板块、太平洋板块和菲律宾海板块的相互作用带。依据国际热流委员会(IHFC)提供的东海地热数据,经过统计确定出该区域的热流分布,热流平均值为121·0mW/m2,最小值为73·0mW/m2,最大值为168·0mW/m2。同时利用天然气水合物温压模型计算了稳定带厚度,数据显示稳定带厚度平均值为92·2m,最小值为1·4m,最大值为190·6m,薄于其他已经发现的海洋天然气水合物稳定带厚度(约400m)。天然气水合物大部分分布在条件适宜的陆坡和岛坡上,冲绳海槽底部水合物稳定带厚度相对较薄。统计分析表明本区热流值与水合物稳定带厚度相关性很差,相关系数仅有0·12。这是由于天然气水合物所在海域水深较浅时,海底温度的变化迫使运算所应用的非线性方程影响因子迅速积累,从而导致相关系数降低。最后结合东海陆坡的地质条件,探讨了在天然气水合物存在的情况下,陆坡失稳的可能性及其造成的环境影响。 相似文献
38.
TANG Ling SONG Yan LI Qianwen PANG Xiongqi JIANG Zhenxue LI Zhuo TANG Xianglu YU Hailong SUN Yue FAN Shichao ZHU Lin 《《地质学报》英文版》2019,93(2):400-419
Comprehensive quantitative evaluation of shale gas content and the controlling factors in different occurrence states is of great significance for accurately assessing gas-bearing capacity and providing effective well-production strategies. A total of 122 core samples from well JY-A in the Fuling shale gas field were studied to reveal the characteristics of S_1 l shale,15 of which were selected to further predict the shale gas content in different occurrence states, which are dependent on geological factors in the thermal evolution process. Geological parameters were researched by a number of laboratory programs, and the factors influential in controlling shale gas content were extracted by both PCA and GRA methods and prediction models were confirmed by the BE method using SPSS software. Results reveal that the adsorbed gas content is mainly controlled by TOC, Ro, SSA, PD and pyrite content, and the free gas content is mainly controlled by S_2, quartz content, gas saturation and formation pressure for S_1 l in well JY-A. Three methods, including the on-site gas desorption method, the empirical formula method, and the multiple regression analysis method were used in combination to evaluate the shale gas capacity of well JY-A, all of which show that the overall shale gas content of well JY-A is in the range of 2.0–5.0 m~3/t and that the free gas ratio is about 50%, lower than that of well JY-1. Cause analysis further confirms the tectonics and preservation conditions of S_1 l in the geological processes, especially the influence of eastern boundary faults on well JY-A, as the fundamental reasons for the differences in shale gas enrichment in the Jiaoshiba area. 相似文献
39.
SUN Dong LIU Xin-ze YANG Hai-jun CAO Nan ZHANG Zhi-peng CHEN Yin-song LI Da-meng 《地下水科学与工程》2014,7(3):195-213
Studying the influence of shale gas exploration and development on groundwater environment is the basis of guiding water environment protection in the process of shale gas exploration and development. Groundwater environmental pollution is concealed, complex and persistent. Once it is difficult to control the pollution, the current commercial shale gas development zones in Sichuan Basin that are mostly located in karst areas and highly sensitive to groundwater will be vulnerable to the impact of shale gas exploration and development. Based on the hydrogeological conditions of shale gas exploration and development area and combined with engineering analysis of exploration and development, various risk pathways that may affect the groundwater environment during process of shale gas exploration, mining well construction, mining operations and other stages were identified in this paper. Some existing risk pathways were proved by verification of typical areas and should not be ignored. Based on the actual situation of typical areas, the countermeasures of groundwater environmental protection in the process of shale gas exploration and development in karst areas were discussed. It is believed that the ground-water environment can be better protected by strengthening administration, research and application of new technologies, precise design, hydrogeological conditions, and research and feedback of groundwater environmental protection. 相似文献
40.
Coupled groundwater flow and heat transport simulation for estimating transient aquifer–stream exchange at the lowland River Spree (Germany) 下载免费PDF全文
Subsurface flow and heat transport near Freienbrink, NE Germany, was simulated in order to study groundwater–surface water exchange between a floodplains aquifer and a section of the lowland River Spree and an adjacent oxbow. Groundwater exfiltration was the dominant process, and only fast surface water level rises resulted in temporary infiltration into the aquifer. The main groundwater flow paths are identified based on a 3D groundwater flow model. To estimate mass fluxes across the aquifer–surface water interfaces, a 2D flow and heat transport modelling approach along a transect of 12 piezometers was performed. Results of steady‐state and transient water level simulations show an overall high accuracy with a Spearman coefficient ρ = 0.9996 and root mean square error (RMSE) = 0.008 m. Based on small groundwater flow velocities of about 10?7 to 10?6 ms?1, mean groundwater exfiltration rates of 233 l m?2 d?1 are calculated. Short periods of surface water infiltration into the aquifer do not exceed 10 days, and the infiltration rates are in the same range. The heat transport was modelled with slightly less accuracy (ρ = 0.8359 and RMSE = 0.34 °C). In contrast to the predominant groundwater exfiltration, surface water temperatures determine the calculated temperatures in the upper aquifer below both surface water bodies down to 10 m during the whole simulation period. These findings emphasize prevailing of heat conduction over advection in the upper aquifer zones, which seems to be typical for lowland streams with sandy aquifer materials and low hydraulic gradients. Moreover, this study shows the potential of coupled numerical flow and heat transport modelling to understand groundwater–surface water exchange processes in detail. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献