首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   860篇
  免费   107篇
  国内免费   178篇
测绘学   135篇
大气科学   166篇
地球物理   203篇
地质学   286篇
海洋学   188篇
天文学   25篇
综合类   57篇
自然地理   85篇
  2024年   5篇
  2023年   7篇
  2022年   17篇
  2021年   20篇
  2020年   28篇
  2019年   23篇
  2018年   35篇
  2017年   37篇
  2016年   36篇
  2015年   35篇
  2014年   42篇
  2013年   48篇
  2012年   51篇
  2011年   72篇
  2010年   39篇
  2009年   49篇
  2008年   45篇
  2007年   68篇
  2006年   66篇
  2005年   37篇
  2004年   52篇
  2003年   38篇
  2002年   34篇
  2001年   33篇
  2000年   26篇
  1999年   43篇
  1998年   32篇
  1997年   33篇
  1996年   25篇
  1995年   17篇
  1994年   9篇
  1993年   9篇
  1992年   10篇
  1991年   4篇
  1990年   4篇
  1989年   7篇
  1988年   6篇
  1987年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有1145条查询结果,搜索用时 15 毫秒
11.
Over the last 10 years a great interest in spineless cactus pear was shown in the drier areas in terms of both fresh fruit and fodder production. However, there is a lack of knowledge on quantitative data on root dynamics of these plants needed to fully understand its potential under water limiting conditions. This study aimed at quantifying the effects of water stress on the growth of tap roots, side roots and rain roots of the species Opuntia ficus-indica (L.) Miller (cultivar Morado—green cladode) and O. robusta Wendl. (cultivar Monterey—blue cladode). One-year-old cladodes were planted in root boxes and pots (2002/2003 season) that were kept in the greenhouse at day/night temperatures of 25–30 °C/15–18 °C. Placing the cladodes flat on the soil, more areoles came in contact with the soil and therefore more roots developed in both species with an average of only 3.4% areole complexes not rooting. Each areole complex formed on average 3 roots. The highest daily tap root growth was 42 and 36 mm for O. ficus-indica and O. robusta, respectively. Tap root growth increased in the morning with water stress for both species but decreased in the afternoon. Side root growth increased with water stress, with that of O. robusta more per tap root than O. ficus-indica. O. robusta showed a finer root system than O. ficus-indica. The side roots grew as much as 8 and 5 mm per day for O. ficus-indica and O. robusta, respectively. Whitish rain roots developed on the established roots within the first hour after rewetting the soil and grew for only 3 days. Rain roots grew up to 7 and 5 mm within a day for O. ficus-indica and O. robusta, respectively. Considering all studied aspects of their roots systems, O. robusta appears to be better adapted to drought (less sensitive to water stress) than O. ficus-indica.  相似文献   
12.
The application of steam-assisted gravity drainage (SAGD) to recover heavy oil sands is becoming increasingly important in the northern Alberta McMurray Formation because of the vast resources/reserves accessible with this mechanism. Selecting the stratigraphic elevations of SAGD well pairs is a vital decision for reservoir evaluation and planning. The inherent uncertainty in the distribution of geological variables significantly influences this decision. Geostatistical simulation is used to capture geological uncertainty, which is used can be transformed into a distribution of the best possible well pair elevations. A simple exhaustive calculation scheme is used to determine the optimum stratigraphic location of a SAGD well pair where the recovery R is maximized. There are three basic steps to the methodology: (1) model the uncertainty in the top continuous bitumen (TCB) and bottom continuous bitumen (BCB) surfaces, (2) calculate the recovery at all possible elevation increments within the TCB and BCB interval, and (3) identify the elevation that maximizes R. This is repeated for multiple TCB/BCB pairs of surfaces to assess uncertainty. The methodology is described and implemented on a subset of data from the Athabasca Oilsands in Fort McMurray, Alberta.  相似文献   
13.
The power-law exponent (n) in the equation: D=cL n , with D = maximum displacement and L = fault length, would be affected by deviations of fault trace length. (1) Assuming n=1, numerical simulations on the effect of sampling and linkage on fault length and length–displacement relationship are done in this paper. The results show that: (a) uniform relative deviations, which means all faults within a dataset have the same relative deviation, do not affect the value of n; (b) deviations of the fault length due to unresolved fault tip decrease the values of n and the deviations of n increase with the increasing length deviations; (c) fault linkage and observed dimensions either increase or decrease the value of n depending on the distribution of deviations within a dataset; (d) mixed deviations of the fault lengths are either negative or positive and cause the values of n to either decrease or increase; (e) a dataset combined from two or more datasets with different values of c and orders of magnitude also cause the values of n to deviate. (2) Data including 19 datasets and spanning more than eight orders of fault length magnitudes (10−2–105 m) collected from the published literature indicate that the values of n range from 0.55 to 1.5, the average value being 1.0813, and the peak value of n d (double regression) is 1.0–1.1. Based on above results from the simulations and published data, we propose that the relationship between the maximum displacement and fault length in a single tectonic environment with uniform mechanical properties is linear, and the value of n deviated from 1 is mainly caused by the sampling and linkage effects.  相似文献   
14.
These last 10 years, numerical models of mantle convection have emphasized the role of the 670 km endothermic phase change in generating avalanches that trigger catastrophic mass transfers between upper and lower mantle. On the other hand, scientists have emphasized the concomitance of large-scale worldwide geophysical and tectonic events, which could find their deep thermal roots in the huge mass transfers induced by the avalanches. In particular, the paleontological records show two periods of length of day (l.o.d.) shortening between 420 and 360, and 200 and 80 Myr BP. This last event is synchronous with a strong true polar wander and a global warming of the upper mantle. In order to study the potential effects of the avalanche on the main component of the Earth’s rotation, the Liouville equation has been solved and the l.o.d. evolution has been calculated from the perturbations of the inertia tensor. The results show that the inertia tensor of the Earth’s is mainly sensitive to the global transfers through the 670 km discontinuity. The l.o.d. perturbations will be synchronous with the global thermal effects of the avalanche. These theoretical results allow proposing a self-consistent physical mechanism to explain periods of the Earth’s rotation acceleration. Within this context, the l.o.d. shortening during the Cenozoic and Cretaceous brings one more clue to the possible participation of a mantle avalanche in generating the concomitant large scale events which have occurred during this very particular period of the Earth’s history.  相似文献   
15.
付培义 《测绘工程》2003,12(2):47-48,58
比较GPS弦距与常规光电测距弦距的差别,对分析GPS测量误差问题,解决GPS与地面数据联合平差中权的确定问题,以及检核GPS网的解算结果具有重要意义。本文利用一多期复测成果,对其中的一些问题作了初步探讨。  相似文献   
16.
用通日月均值减去夜均值计算的月均值资料和Sompi谱分析法分析了14个台站的北向分量1年周期变化的振幅向相位,时段为1984-1988年。分析结果显示用P^0n(dnd=1,…,6)复合模式的估算的C值较合理。各台的C值比较一致。  相似文献   
17.
A combined analysis of lineament length density from radar imagery and surface resistivity data is used to assess the hydrogeological conditions in the Oban massif, Nigeria. The results show that the data guided the qualitative and quantitative estimation of some aquifer parameters. These include resistivity of the water bearing formations (280–740 ω m), thickness (5–140 m), limited hydraulic conductivity (8.53-13.18 m/day) and transmissivity (410.65–725.88 m2/day) data. In addition, the lineament length density for the area ranged between less than 0.2 to slightly more than 0.4. Site evaluation for the location of productive boreholes/wells using a groundwater potential index (GWPI) indicates that areas with a GWPI of greater than 35 are consistent with relatively high yield.  相似文献   
18.
A regional atmospheric climate model is used toexamine the effect of changes in the roughnesslengths of momentum (z0m) and heat (z0h)on the structure of the lower atmosphere and on thesurface energy fluxes over Antarctica. Fourexperiments were carried out in which z0mand/or z0h were altered with respect to acontrol experiment. The changes consisted of (1) alowering of z0m from a field aggregated froma vegetation map with an orographic correction basedon the European Centre for Medium-Range WeatherForecasts z0m field, to a constant value of10-3 m; and (2) a lowering of z0h from a valueequal to z0m to a constant value of 10-3 mor a value dependent on the wind speed via a surfacerenewal model. A reduction of z0m results in theexpected increase in near-surface wind speed. It alsoresults in an increase in the depth of the layer in whichsouth-easterly near-surface winds prevail, and in adecrease in the strength of the large-scale flow overthe continent, in particular in summer. In theescarpment region a decrease of z0m is foundto result in too high wind speeds. Surface temperatureson average decrease while atmospheric temperaturesincrease, resulting in an increase of near-surfacestatic stability. Changes in roughness lengths donot significantly change the temperature profiles.The surface fluxes, on average found reduced, aremodelled best by using the z0h based on thesurface renewal method.  相似文献   
19.
Abstract Several differently scaled strike‐slip faults were examined. The faults shared many geometric features, such as secondary fractures and linkage structures (damage zones). Differences in fault style were not related to specific scale ranges. However, it was recognized that differences in style may occur in different tectonic settings (e.g. dilational/contractional relays or wall/linkage/tip zones), different locations along the master fault or different fault evolution stages. Fractal dimensions were compared for two faults (Gozo and San Andreas), which supports the idea of self‐similarity. Fractal dimensions for traces of faults and fractures of damage zones were higher (D ~1.35) than for the main fault traces (D ~1.005) because of increased complexity due to secondary faults and fractures. Based on the statistical analysis of another fault evolution study, single event movements in earthquake faults typically have a maximum earthquake slip : rupture length ratio of approximately 10?4, although this has only been established for large earthquake faults because of limited data. Most geological faults have a much higher maximum cumulative displacement : fault length ratio; that is, approximately 10?2 to 10?1 (e.g. Gozo, ~10?2; San Andreas, ~10?1). The final cumulative displacement on a fault is produced by accumulation of slip along ruptures. Hence, using the available information from earthquake faults, such as earthquake slip, recurrence interval, maximum cumulative displacement and fault length, the approximate age of active faults can be estimated. The lower limit of estimated active fault age is expressed with maximum cumulative displacement, earthquake slip and recurrence interval as T ? (dmax /u) · I(M).  相似文献   
20.
水泥土桩单桩荷载传递及临界桩长研究   总被引:7,自引:0,他引:7  
吴雄志 《岩土力学》2004,25(9):1491-1494
将克拉夫-邓肯模型作为传递函数,对水泥土桩荷载传递规律及临界桩长进行了研究,描述了桩周摩阻力的分布及发展规律,并详细讨论了临界桩长的确定标准及各种因素对临界桩长的影响。结果表明,该方法是可行的,该方法同样适用于其它形式的柔性桩。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号