首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1313篇
  免费   293篇
  国内免费   55篇
测绘学   15篇
大气科学   17篇
地球物理   892篇
地质学   254篇
海洋学   323篇
天文学   7篇
综合类   17篇
自然地理   136篇
  2024年   15篇
  2023年   6篇
  2022年   13篇
  2021年   68篇
  2020年   98篇
  2019年   40篇
  2018年   64篇
  2017年   58篇
  2016年   58篇
  2015年   59篇
  2014年   65篇
  2013年   135篇
  2012年   41篇
  2011年   54篇
  2010年   52篇
  2009年   55篇
  2008年   94篇
  2007年   67篇
  2006年   73篇
  2005年   44篇
  2004年   47篇
  2003年   51篇
  2002年   43篇
  2001年   25篇
  2000年   49篇
  1999年   33篇
  1998年   32篇
  1997年   34篇
  1996年   33篇
  1995年   11篇
  1994年   13篇
  1993年   14篇
  1992年   16篇
  1991年   4篇
  1990年   11篇
  1989年   8篇
  1988年   4篇
  1987年   9篇
  1986年   1篇
  1985年   16篇
  1984年   9篇
  1983年   10篇
  1982年   11篇
  1981年   10篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1971年   2篇
排序方式: 共有1661条查询结果,搜索用时 31 毫秒
221.
We compare two methods of evaluating head covariance for two‐dimensional steady‐state flow in mildly heterogeneous bounded rectangular aquifers. The quasi‐analytical approach, widely used in stochastic subsurface hydrology, is based on the Green's function representation, and involves numerical four‐fold integration. We compare this approach with a numerical solution of the two‐dimensional boundary‐value problem for head covariance. We show that the finite differences integration of this problem is computationally less expensive than numerical four‐fold integration of slowly‐convergent infinite series. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
222.
我国工程水文分析计算的新进展   总被引:2,自引:1,他引:1  
熊明  孙双元 《水文》1999,(5):27-30
通过对我国在工程水文分析计算的回顾,总结了近年来我国在洪水频率分析、洪水不确定性研究、人类活动及气候变化对径流的影响等方面的最新进展,提出了今后水文计算的研究方向。  相似文献   
223.
Though it is well known that vegetation affects the water balance of soils through canopy interception and evapotranspiration, its hydrological contribution to soil hydrology and stability is yet to be fully quantified. To improve understanding of this hydrological process, soil water dynamics have been monitored at three adjacent hillslopes with different vegetation covers (deciduous tree cover, coniferous tree cover, and grass cover), for nine months from December 2014 to September 2015. The monitored soil moisture values were translated into soil matric suction (SMS) values to facilitate the analysis of hillslope stability. Our observations showed significant seasonal variations in SMS for each vegetation cover condition. However, a significant difference between different vegetation covers was only evident during the winter season where the mean SMS under coniferous tree cover (83.6 kPa) was significantly greater than that under grass cover (41 kPa). The hydrological reinforcing contribution due to matric suction was highest for the hillslope with coniferous tree cover, while the hillslope with deciduous tree cover was second and the hillslope with grass cover was third. The greatest contributions for all cover types were during the summer season. During the winter season, the wettest period of the monitoring study, the additional hydrological reinforcing contributions provided by the deciduous tree cover (1.5 to 6.5 kPa) or the grass cover (0.9 to 5.4 kPa) were insufficient to avoid potential slope failure conditions. However, the additional hydrological reinforcing contribution from the coniferous tree cover (5.8 to 10.4 kPa) was sufficient to provide potentially stable hillslope conditions during the winter season. Our study clearly suggests that during the winter season the hydrological effects from both deciduous tree and grass covers are insufficient to promote slope stability, while the hydrological reinforcing effects from the coniferous tree cover are sufficient even during the winter season. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
224.
This study measures the presence of bacteria‐sediment associations (BSAs) in an alpine, glacier‐fed watershed in the Southern Coast Mountains of British Columbia, Canada. The impact of BSAs on the creation of flocculated particles and their settling velocity are quantified using a laser transmissometer. Results from the study indicate that BSAs are present in the watershed and vary over both space and time. The percentage of bacteria associated with sediment particles was found to range from < 1% to 40%. Major sources of planktonic bacteria such as agricultural land and wastewater treatment outflow co‐occur with large decreases in the BSA ratio. Laboratory analysis demonstrates that an increase in the concentration of bacteria was associated with a decrease in the volume concentration of small particles, and a decrease in both estimated density and measured settling velocity for particles in larger size classes; consistent with flocculated particles of increasing complexity arising from combinations of primary particles and/or BSAs. Paleoenvironmental reconstructions using laminated lake sediments in alpine, glacier‐fed systems benefit from a fuller understanding of the geomorphologic processes by which they formed. While bacteria are noted to enhance formation of flocculated particles in laboratory systems, their impact upon geomorphic processes in natural systems have yet to be fully explored. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
225.
Geochemical and isotopic tracers were often used in mixing models to estimate glacier melt contributions to streamflow, whereas the spatio‐temporal variability in the glacier melt tracer signature and its influence on tracer‐based hydrograph separation results received less attention. We present novel tracer data from a high‐elevation catchment (17 km2, glacierized area: 34%) in the Oetztal Alps (Austria) and investigated the spatial, as well as the subdaily to monthly tracer variability of supraglacial meltwater and the temporal tracer variability of winter baseflow to infer groundwater dynamics. The streamflow tracer variability during winter baseflow conditions was small, and the glacier melt tracer variation was higher, especially at the end of the ablation period. We applied a three‐component mixing model with electrical conductivity and oxygen‐18. Hydrograph separation (groundwater, glacier melt, and rain) was performed for 6 single glacier melt‐induced days (i.e., 6 events) during the ablation period 2016 (July to September). Median fractions (±uncertainty) of groundwater, glacier melt, and rain for the events were estimated at 49±2%, 35±11%, and 16±11%, respectively. Minimum and maximum glacier melt fractions at the subdaily scale ranged between 2±5% and 76±11%, respectively. A sensitivity analysis showed that the intraseasonal glacier melt tracer variability had a marked effect on the estimated glacier melt contribution during events with large glacier melt fractions of streamflow. Intra‐daily and spatial variation of the glacier melt tracer signature played a negligible role in applying the mixing model. The results of this study (a) show the necessity to apply a multiple sampling approach in order to characterize the glacier melt end‐member and (b) reveal the importance of groundwater and rainfall–runoff dynamics in catchments with a glacial flow regime.  相似文献   
226.
The response of a landslide near Barcelonnette (southeast France) to climatic factors was simulated with three slope stability models: a fully empirical gross precipitation threshold, a semi‐empirical threshold model for net precipitation, and a fully conceptual slope stability model. The three models performed with similar levels in reproducing the present‐day temporal pattern of landslide reactivation, using dendrogeomorphological information as test data. The semi‐empirical and conceptual models were found to be overparameterized, because more than one parameter setting matching the test data was identified. In the case of the conceptual model, this resulted in strongly divergent scenarios of future landslide activity, using downscaled climate scenarios as inputs to the model. The uncertainty of the landslide scenarios obtained with the semi‐empirical model was much lower. In addition, the simulation of strongly different scenarios by the fully empirical threshold was attributed to its incomplete representation of the site‐specific landslide reactivation mechanism. It is concluded that the semi‐empirical model constitutes the best compromise between conceptual representation and model robustness. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
227.
Theoretical studies of glacial outburst floods (jökulhlaups) assume that: (i) intraglacial floodwater is transported efficiently in isolated conduits; (ii) intraglacial conduit enlargement operates proportionally to increasing discharge; (iii) floodwater exits glaciers through pre‐existing ice‐marginal outlets; and (iv) the morphology and positioning of outlets remains fixed during flooding. Direct field observations, together with historical jökulhlaup accounts, confirm that these theoretical assumptions are not always correct. This paper presents new evidence for spatial and temporal changes in intraglacial floodwater routing during jökulhlaups; secondly, it identifies and explains the mechanisms controlling the position and morphology of supraglacial jökulhlaup outlets; and finally, it presents a conceptual model of the controls on supraglacial outbursts. Field observations are presented from two Icelandic glaciers, Skeiðarárjökull and Sólheimajökull. Video footage and aerial photographs, taken before, during and after the Skeiðarárjökull jökulhlaup and immediately after the Sólheimajökull jökulhlaup, reveal changes in floodwater routing and the positioning and morphology of outlets. Field observations confirm that glaciers cannot transmit floodwater as efficiently as previously assumed. Rapid increases in jökulhlaup discharge generate basal hydraulic pressures in excess of ice overburden. Under these circumstances, floodwater can be forced through the surface of glaciers, leading to the development of a range of supraglacial outlets. The rate of increase in hydraulic pressure strongly influences the type of supraglacial outlet that can develop. Steady increases in basal hydraulic pressure can retro‐feed pre‐existing englacial drainage, whereas transient increases in pressure can generate hydraulic fracturing. The position and morphology of supraglacial outlets provide important controls on the spatial and temporal impact of flooding. The development of supraglacial jökulhlaup outlets provides a new mechanism for rapid englacial debris entrainment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
228.
This paper compares various ways of quantifying the importance of land–atmosphere feedback. A widely used land surface hydrology model is used in coupled (to a planetary boundary layer model) and uncoupled modes to compare the adequacy of different feedback indices. It is found that existing feedback indices are primarily based on ‘one factor at a time’ sensitivity analysis and cannot adequately capture the interaction between land and atmosphere. A new index is used which combines factorial design concepts and traditional sensitivity analysis. This index is shown to capture and quantify the strength of interaction between land surface parameters and atmosphere. To assess the effects of forcing characteristics on the stand alone model sensitivity, several ways to specify near-surface atmospheric conditions are evaluated. It is found that commonly used forcing conditions (e.g. model generated or observed time-series of near-surface atmospheric variables) may not be adequate to mimic the coupled model environment for evaluating the land surface representations. The partially coupled model sensitivity is shown to capture a major feedback loop related to water holding capacity, surface fluxes and near-surface atmospheric processes. These results suggest that sensitivity from the stand alone model should be interpreted with caution and future evaluations should strive to incorporate land–atmosphere feedback, at least within a partially coupled model. © 1997 John Wiley & Sons, Ltd.  相似文献   
229.
本研究基于FVCOM环流模型,耦合ECMWF背景风场和Jelesnianski台风经验模型形成合成风场,对9711台风“温妮”过境辽河口区域的水动力进行模拟研究。模型通过在动量方程、湍流方程中加入附加源项来表达盐沼植被对水动力的阻碍作用。使用研究区域实测的潮位、流速、流向等数据对水动力模型进行验证,模拟结果与实测数据吻合较好。结果表明:潮滩盐沼植被对台风过境期间的潮位变化无明显影响,但对流速具有显著的衰减作用,且芦苇对潮流的衰减作用大于盐地碱蓬植被,芦苇区的速度最大衰减率达81.43%。此外,台风路径变化对辽河口湿地海域的增减水及流速影响较大,台风强度越强,局部区域造成的风暴潮增水和流速也相应越大。  相似文献   
230.
Salinity difference between terrestrial river discharge and oceanic tidal water plays a role in modifying the local flow field and, as a consequence, estuarine morphodynamics. Although widely recognized, recent numerical studies exploring the long-term morphological evolution of river-influenced estuaries with two-dimensional, depth-averaged models have mostly neglected salinity. Using a three-dimensional morphodynamic model, we aim to gain more insight into the effect of salinity on the morphodynamics of fluvio-deltaic systems. Model results indicate that the resultant estuarine morphology established after 600 years differs remarkably when a salinity gradient is included. A fan-shaped river-mouth delta exhibits less seaward expansion and is cut through by narrower channels when salinity is included. The inclusion of salinity tends to generate estuarine circulation, which favours landward sediment transport and hence limits the growth of the delta while enhancing the development of intertidal areas. The formation of deltaic channel–shoal patterns resulting from morphodynamic evolution tends to strengthen salinity stratification, which is characterized by an increased gradient Richardson number. The direction of the depth-averaged residual sediment transport over a tide may be opposite to the direction of residual velocity, indicating the significant influence of baroclinic effects on the net sediment transport direction (and hence morphological change). The effect of salinity on morphological evolution becomes less profound when the strength of tidal or fluvial forcing is dominant over the other. The effects of sediment type and flocculation, which are particularly important when salinity gradients are present, are also discussed. Overall, this study highlights that neglecting salinity to simulate long-term estuarine morphodynamics requires more careful justification, particularly when the environment is characterized by fine sediment types (favouring suspended transport), and relatively large river discharge and estuarine depth (favouring baroclinic effects). © 2020 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号