首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1313篇
  免费   293篇
  国内免费   55篇
测绘学   15篇
大气科学   17篇
地球物理   892篇
地质学   254篇
海洋学   323篇
天文学   7篇
综合类   17篇
自然地理   136篇
  2024年   15篇
  2023年   6篇
  2022年   13篇
  2021年   68篇
  2020年   98篇
  2019年   40篇
  2018年   64篇
  2017年   58篇
  2016年   58篇
  2015年   59篇
  2014年   65篇
  2013年   135篇
  2012年   41篇
  2011年   54篇
  2010年   52篇
  2009年   55篇
  2008年   94篇
  2007年   67篇
  2006年   73篇
  2005年   44篇
  2004年   47篇
  2003年   51篇
  2002年   43篇
  2001年   25篇
  2000年   49篇
  1999年   33篇
  1998年   32篇
  1997年   34篇
  1996年   33篇
  1995年   11篇
  1994年   13篇
  1993年   14篇
  1992年   16篇
  1991年   4篇
  1990年   11篇
  1989年   8篇
  1988年   4篇
  1987年   9篇
  1986年   1篇
  1985年   16篇
  1984年   9篇
  1983年   10篇
  1982年   11篇
  1981年   10篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1971年   2篇
排序方式: 共有1661条查询结果,搜索用时 116 毫秒
201.
冰川是气候变化的指示器,气候变化对冰川及其径流的影响研究是目前国内外关注的热点和前沿领域之一,目前的研究以模拟为主,实测资料十分有限且不确定性很大。以新疆天山乌鲁木齐河源1号冰川(简称“1号冰川”)流域为例,基于中国科学院天山冰川观测试验站1959-2017年观测数据,研究了中国西部典型小型冰川流域径流及其组分长期变化以及对气候变化的响应,为冰川径流长期变化过程的认识提供重要参考。结果表明,1号冰川流域径流主要由冰川径流和非冰川区降水径流组成,分别占70%和30%。其中冰川径流又可分为冰川区降水径流和冰川融水径流,分别占44%和26%。59年间,冰川径流整体呈上升趋势,在1992年之后出现了一个阶梯式的上升,与气温升高和降水的增加有关,1997-2007年达到高峰,2008年以后出现波动下降趋势,其原因除了与该时段的降水有所减少有关之外,冰川面积减小的影响也不可忽视。另外,还利用实测径流和冰川物质平衡值,通过水量平衡模型,检验了模型使用的冰川区和非冰川区径流系数。  相似文献   
202.
Geological and hydrological characteristics, joint geometric features, rock physical and mechanical properties and rock mass quality are studied in the Beishan area, preselected for China’s high-level radioactive waste (HLW) disposal engineering. A comprehensive survey method is developed to study joint geometric features in the outcrop and samples from borehole BS06 into the Xinchang rock mass were tested. The optimal joint sets are determined by rose diagrams and equal-area lower hemisphere plots of joint poles. Results show that: 1) the distribution of joint occurrence obeys a normal distribution, while the distribution of joint spacing obeys a negative exponential distribution; 2) concentric circular and tangent circular sampling windows are applied to study the trace length and the trace midpoint density. Results indicate that tangent circular sampling window is more stable and reasonable; 3) Beishan granite shows high density, low porosity and high strength based on many laboratory tests and the physical properties and mechanical properties are closely related; and 4) a synthesis index, Joint Structure Rating (JSR), is applied to evaluate the quality of rock mass. Through the research results of rock mass characteristics, the Xinchang rock mass in the Beishan preselected area has the favorable conditions for China’s HLW disposal repository site.  相似文献   
203.
广利河口拦门沙发育动态和河口航道的选择   总被引:1,自引:0,他引:1  
根据现场调查和历史资料,获取了广利河口拦门沙水动力特征、海底地形和底质特征,对拦门沙的动态发育和波浪作用下拦门沙运动状态进行了分析,探讨了广利河口的航道选择方案。分析结果认为,广利河槽外航道宜从东偏南向入海。  相似文献   
204.
A suite of instruments was deployed in a coastal wetland ecosystem in the Albemarle estuarine system, North Carolina (USA), to characterize wind‐driven transport of saltwater through a constructed (man‐made) channel. Flow velocity, electrical conductivity, and stage were measured in a representative channel over a 2‐month period from May to July 2014, during which 4 wind tides were observed. Collected data show that thousands of metric tons of salt were advected through the channel into coastal wetlands during each event, which lasted up to 4 days. The results reveal that as much as 36% of advected salts accumulated in the wetlands, suggesting that the cumulative effects of these events on the health of coastal wetlands in the Albemarle system may be substantial due to the abundance of constructed channels and the frequency of wind‐driven tidal events. This study is the first to quantify wind‐driven salt fluxes through constructed channels in coastal wetland settings.  相似文献   
205.
The 20 km2 Galabre catchment belongs to the French network of critical zone observatories (OZCAR; Gaillardet et al., Vadose Zone Journal, 2018, 17(1), 1–24). It is representative of the sedimentary lithology and meteorological forcing found in Mediterranean and mountainous areas. Due to the presence of highly erodible and sloping badlands on various lithologies, the site was instrumented in 2007 to understand the dynamics of suspended sediments (SS) in such areas. Two meteorological stations including measurements of air temperature, wind speed and direction, air moisture, rainfall intensity, raindrop size and velocity distribution were installed both in the upper and lower part of the catchment. At the catchment outlet, a gauging station records the water level, temperature and turbidity (10 min time-step). Stream water samples are collected automatically to estimate SS concentration-turbidity relationships, allowing quantification of SS fluxes with known uncertainty. The sediment samples are further characterized by measuring their particle size distributions and by applying a low-cost sediment fingerprinting approach using spectrocolorimetric tracers. Thus, the contributions of badlands located on different lithologies to total SS flux are quantified at a high temporal resolution, providing the opportunity to better analyse the links between meteorological forcing variability and watershed hydrosedimentary response. The set of measurements was extended to the dissolved phase in 2017. Both stream water electrical conductivity and major ion concentrations are measured each week and every 3 h during storm events. This extension of measurements to the dissolved phase will allow progress in understanding both the origin of the water during the events and the partitioning between particulate and dissolved fluxes of solutes in the critical zone. All data sets are available at https://doi.osug.fr/public/DRAIXBLEONE_GAL/index.html .  相似文献   
206.
We introduce the freely available web-based Water in an Agricultural Landscape—NUčice Database (WALNUD) dataset that includes both hydrological and meteorological records at the Nučice experimental catchment (0.53 km2), which is representative of an intensively farmed landscape in the Czech Republic. The Nučice experimental catchment was established in 2011 for the observation of rainfall–runoff processes, soil erosion processes, and water balance of a cultivated landscape. The average altitude is 401 m a.s.l., the mean land slope is 3.9%, and the climate is humid continental (mean annual temperature 7.9°C, annual precipitation 630 mm). The catchment is drained by an artificially straightened stream and consists of three fields covering over 95% of the area which are managed by two different farmers. The typical crops are winter wheat, rapeseed, and alfalfa. The installed equipment includes a standard meteorological station, several rain gauges distributed across the basin, and a flume with an H-type facing that is used to monitor stream discharge, water turbidity, and basic water quality indicators. Additionally, the groundwater level and soil water content at various depths near the stream are recorded. Recently, large-scale soil moisture monitoring efforts have been introduced with the installation of two cosmic-ray neutron sensors for soil moisture monitoring. The datasets consist of observed variables (e.g. measured precipitation, air temperature, stream discharge, and soil moisture) and are available online for public use. The cross-seasonal, open access datasets at this small-scale agricultural catchment will benefit not only hydrologists but also local farmers.  相似文献   
207.
Karst areas and their catchments pose a great challenge for protection because fast conduit flow results in low natural attenuation of anthropogenic contaminants. Studies of the hydrochemistry of karst sources and river solutes are an important tool for securing and managing water resources. A study of the geochemical downriver evolution of the Wiesent River and its tributaries, located in a typical karst terrain, revealed unexpected downstream decreases of nitrate with maximum mean values of 30 mg/L at the source to minimum values of 18 mg/L near the river mouth. This trend persisted over the length of the river even though increased agricultural activities are evident in the downstream section of the catchment. This pattern is caused by fertilizer inputs via diffusive and fast conduits flow from karst lithology in the upstream area that may have reached the river's source even from beyond the hydrological catchment boundaries. Further downstream, these influences became diluted by tributary inputs that drain subcatchments dominated by claystone and sandstone lithologies that increased potassium and sulphate concentrations. Our findings indicate that bedrock geology remains the dominant control on the major ion chemistry of the Wiesent River and that agricultural influences are strongest near the headwaters despite increased land use further downstream, due to long‐term storage and accumulation in karst aquifers. This feature may not be unique to the Wiesent River system, as carbonates cover significant portions of the Earth's surface and subsequent work in other river systems could establish whether such patterns are ubiquitous worldwide.  相似文献   
208.
An experimental campaign was set up to quantify the contribution of evapotranspiration fluxes on hillslope hydrology and stability for different forest vegetation cover types. Three adjacent hillslopes, respectively, covered by hardwood, softwood, and grass were instrumented with nine access tubes each to monitor soil water dynamics at the three depths of 30, 60, and 100 cm, using a PR2/6 profile probe (Delta‐T Devices Ltd) for about 6 months including wet periods. Soil was drier under softwood and wetter under grass at all the three depths during most of the monitoring period. Matric suction derived via the soil moisture measurements was more responsive to changes in the atmospheric conditions and also recovered faster at the 30 cm depth. Results showed no significant differences between mean matric suction under hardwood (101.6 kPa) with that under either softwood or grass cover. However, a significant difference was found between mean matric suction under softwood (137.5 kPa) and grass (84.3 kPa). Results revealed that, during the wettest period, the hydrological effects from all three vegetation covers were substantial at the 30 cm depth, whereas the contribution from grass cover at 60 cm (2.0 kPa) and 100 cm (1.1 kPa) depths and from hardwood trees at 100 cm depth (1.2 kPa) was negligible. It is surmised that potential instability would have occurred at these larger depths along hillslopes where shallow hillslope failures are most likely to occur in the region. The hydrological effects from softwood trees, 8.1 and 3.9 kPa, were significant as the corresponding factor of safety values showed stable conditions at both depths of 60 and 100 cm, respectively. Therefore, the considerable hydrological reinforcing effects from softwood trees to the 100 cm depth suggest that a hillslope stability analysis would show that hillslopes with softwood trees will be stable even during the wet season.  相似文献   
209.
Current efforts to assess changes to the wetland hydrology caused by growing anthropogenic pressures in the Athabasca Oil Sands Region (AOSR) require well-founded spatial and temporal estimates of actual evapotranspiration (ET), which is the dominant component of the water budget in this region. This study assessed growing season (May–September) and peak growing season (July) ET variability at a treed moderate-rich fen and treed poor fen (in 2013–2018), open poor fen (in 2011–2014), and saline fen (in 2015–2018) using eddy covariance technique and a set of complementary environmental data. Seasonal fluctuations in ET were positively related to net radiation, air temperature and vapour pressure deficit and followed trends typical for the Boreal Plains (BP) and AOSR with highest rates in June–July. However, no strong effect of water table position on ET was found. Strong surface control on ET is evident from lower ET values than potential evapotranspiration (PET); the lowest ET/PET was observed at saline fen, followed by open fen, moderately treed fen, and heavily treed fen, suggesting a strong influence of vegetation on water loss. In most years PET exceeded precipitation (P), and positive relations between P/PET and ET were observed with the highest July ET rates occurring under P/PET ~1. However, during months with P/PET > 1, increased P/PET was associated with decreased July ET. With respect to 30-year mean values of air temperature and P in the area, both dry and wet, cool and warm growing seasons (GS) were observed. No clear trends between ET values and GS wetness/coldness were found, but all wet GS were characterized by peak growing seasons with high daily ET variability.  相似文献   
210.
Despite decades of research on the ecological consequences of stream network expansion, contraction and fragmentation, surprisingly little is known about the hydrological mechanisms that shape these processes. Here, we present field surveys of the active drainage networks of four California headwater streams (4–27 km2) spanning diverse topographic, geologic and climatic settings. We show that these stream networks dynamically expand, contract, disconnect and reconnect across all the sites we studied. Stream networks at all four sites contract and disconnect during seasonal flow recessions, with their total active network length, and thus their active drainage densities, decreasing by factors of two to three across the range of flows captured in our field surveys. The total flowing lengths of the active stream networks are approximate power‐law functions of unit discharge, with scaling exponents averaging 0.27 ± 0.04 (range: 0.18–0.40). The number of points where surface flow originates obey similar power‐law relationships, as do the lengths and origination points of flowing networks that are continuously connected to the outlet, with scaling exponents averaging 0.36–0.48. Even stream order shifts seasonally by up to two Strahler orders in our study catchments. Broadly, similar stream length scaling has been observed in catchments spanning widely varying geologic, topographic and climatic settings and spanning more than two orders of magnitude in size, suggesting that network extension/contraction is a general phenomenon that may have a general explanation. Points of emergence or disappearance of surface flow represent the balance between subsurface transmissivity in the hyporheic zone and the delivery of water from upstream. Thus the dynamics of stream network expansion and contraction, and connection and disconnection, may offer important clues to the spatial structure of the hyporheic zone, and to patterns and processes of runoff generation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号