首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   834篇
  免费   75篇
  国内免费   69篇
测绘学   24篇
大气科学   2篇
地球物理   127篇
地质学   67篇
海洋学   560篇
天文学   1篇
综合类   39篇
自然地理   158篇
  2024年   3篇
  2023年   12篇
  2022年   21篇
  2021年   28篇
  2020年   39篇
  2019年   27篇
  2018年   43篇
  2017年   31篇
  2016年   35篇
  2015年   40篇
  2014年   39篇
  2013年   86篇
  2012年   20篇
  2011年   42篇
  2010年   45篇
  2009年   54篇
  2008年   58篇
  2007年   40篇
  2006年   36篇
  2005年   25篇
  2004年   27篇
  2003年   33篇
  2002年   19篇
  2001年   11篇
  2000年   27篇
  1999年   14篇
  1998年   10篇
  1997年   14篇
  1996年   14篇
  1995年   4篇
  1994年   6篇
  1993年   4篇
  1992年   6篇
  1991年   1篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   12篇
  1984年   9篇
  1983年   10篇
  1982年   13篇
  1981年   10篇
排序方式: 共有978条查询结果,搜索用时 546 毫秒
111.
Larvae of estuarine organisms continually face possible export from the parent estuary. Retention of larvae of the estuarine crab Rhithropanopeus harrisii was investigated in the upper Newport River estuary, North Carolina. All of the developmental stages occurred in the same area of the estuary with similar horizontal distributions, and the concentrations of intermediate and late stages were not greatly reduced from those of the first larval stage. This was strong evidence for the continuous retention of larvae in the upper estuary.To determine mechanisms by which retention might be effected, field studies of the vertical distributions and migrations of these larvae were made. The four zoeal stages had similar but complex vertical migration patterns, which varied from study to study. These migrations centered on the depth of no net flow, reducing longitudinal transport during development. Cross-spectral analysis of the larval migrations and the environmental cycles of light, salinity and current speed revealed that each of these external cycles affected larval depth. Megalopae of R. harrisii also migrated vertically, but they were present in much lower concentrations than the zoeal stages, an indication of a change to benthic existence in this final larval form.  相似文献   
112.
113.
114.
Quantifying geomorphic conditions that impact riverine ecosystems is critical in river management due to degraded riverine habitat, changing flow and thermal conditions, and increasing anthropogenic pressure. Geomorphic complexity at different scales directly impacts habitat heterogeneity and affects aquatic biodiversity resilience. Here we showed that the combination of continuous spatial survey at high resolution, topobathymetric light detection and ranging (LiDAR), and continuous wavelet analysis can help identify and characterize that complexity. We used a continuous wavelet analysis on 1-m resolution topobathymetry in three rivers in the Salmon River Basin, Idaho (USA), to identify different scales of topographic variability and the potential effects of this variability on salmonid redd site selection. On each river, wavelet scales characterized the topographic variability by portraying repeating patterns in the longitudinal profile. We found three major representative spatial wavelet scales of topographic variability in each river: a small wavelet scale associated with local morphology such as pools and riffles, a mid-wavelet scale that identified larger channel unit features, and a large wavelet scale related to valley-scale controls. The small wavelet scale was used to identify pools and riffles along the entire lengths of each river as well as areas with differing riffle-pool development. Areas along the rivers with high local topographic variability (high wavelet power) at all wavelet scales contained the largest features (i.e., deepest or longest pools) in the systems. By comparing the wavelet power for each wavelet scale to Chinook salmon redd locations, we found that higher small-scale wavelet power, which is related to pool-riffle topography, is important for redd site selection. The continuous wavelet methodology objectively identified scales of topographic variability present in these rivers, performed efficient channel-unit identification, and provided geomorphic assessment without laborious field surveys.  相似文献   
115.
Large wood (LW) is an ecosystem engineer and keystone structure in river ecosystems, influencing a range of hydromorphological and ecological processes and contributing to habitat heterogeneity and ecosystem condition. LW is increasingly being used in catchment restoration, but restored LW jams have been observed to differ in physical structure to naturally occurring jams, with potential implications for restoration outcomes. This article examines the structural complexity and ecosystem engineering effects of LW jams at four sites with varying management intensity incorporating natural and restored wood. Our results reveal: (i) structural complexity and volume of jams was highest in the site with natural jams and low intensity riparian management, and lowest in the suburban site with simple restored jams; and (ii) that structural complexity influences the ecosystem engineering role of LW, with more complex jams generating the greatest effects on flow hydraulics (flow concentration, into bed flows) and sediment characteristics (D50, organic content, fine sediment retention) and the simplest flow deflector-style restored jams having the least pronounced effects. We present a conceptual model describing a continuum of increasing jam structural complexity and associated hydromorphological effects that can be used as a basis for positioning and evaluating other sites along the management intensity spectrum to help inform restoration design and best practice.  相似文献   
116.
This paper reports a geomorphologic landscape investigation, vegetation survey and soil sampling at 14 sites across the Gurbantunggut Desert between 87°37′09"-88°24′04"E and 44°14′04"-45°41′52′Nl. The study encountered 8 species of low trees and shrubs, 5 of perennial herbs, 8of annual plants and 48 of ephemeral and ephemeroid plants. These species of plants represent one-third of the species found in the Gurbantunggut Desert, and their communities make up a large proportion of desert vegetation with great landscape significance. In the investigation we found that the plant communities are accordingly succeeded with the spatial variation of macro-ecoenvironment.Using Principal Component Analysis (PCA) and Correlation Analysis (CA) we found that the micro-ecoenvironment heterogeneity of aeolian sandy soil′s physical and chemical properties such as soil nutrient, soil moisture, soil salt, pH etc. only impacted the diversity of herb synusia (PIEherb) of the desert, with a negative correlation. Meanwhile, the impact of microhabitat on the plant community pattern with an antagonistic interaction made vegetation′s eco-distribution in a temporary equilibrium.  相似文献   
117.
广利河口拦门沙发育动态和河口航道的选择   总被引:1,自引:0,他引:1  
根据现场调查和历史资料,获取了广利河口拦门沙水动力特征、海底地形和底质特征,对拦门沙的动态发育和波浪作用下拦门沙运动状态进行了分析,探讨了广利河口的航道选择方案。分析结果认为,广利河槽外航道宜从东偏南向入海。  相似文献   
118.
A suite of instruments was deployed in a coastal wetland ecosystem in the Albemarle estuarine system, North Carolina (USA), to characterize wind‐driven transport of saltwater through a constructed (man‐made) channel. Flow velocity, electrical conductivity, and stage were measured in a representative channel over a 2‐month period from May to July 2014, during which 4 wind tides were observed. Collected data show that thousands of metric tons of salt were advected through the channel into coastal wetlands during each event, which lasted up to 4 days. The results reveal that as much as 36% of advected salts accumulated in the wetlands, suggesting that the cumulative effects of these events on the health of coastal wetlands in the Albemarle system may be substantial due to the abundance of constructed channels and the frequency of wind‐driven tidal events. This study is the first to quantify wind‐driven salt fluxes through constructed channels in coastal wetland settings.  相似文献   
119.
The water level of marsh wetlands is a dominant force controlling the wetland ecosystem function, especially for aquatic habitat. For different species, water level requirements vary in time and space, and therefore ensuring suitable water levels in different periods is crucial for the maintenance of biodiversity in marsh wetlands. Based on hydrodynamic modelling and habitat suitability assessment, we determined suitable dynamic water levels considering aquatic habitat service at different periods in marsh wetlands. The two-dimensional hydrodynamic model was used to simulate the temporal and spatial variation of water level. The habitat suitability for target species at various water levels was evaluated to obtain the fitting curves between Weighted Usable Area (WUA) and water levels. And then suitable water levels throughout the year were proposed according to the fitting curves. Using the Zhalong Wetland (located in northeastern China) as a case study, we confirmed that the proposed MIKE 21 model can successfully be used to simulate the water level process in the wetland. Suitable water levels were identified as being from 143.9–144.2 m for April to May, 144.1–144.3 m for June to September, and 144.3–144.4 m for October to November (before the freezing season). Furthermore, proposed water diversion schemes have been identified which can effectively sustain the proposed dynamic water levels. This study is expected to provide appropriate guidance for the determination of environmental flows and water management strategies in marsh wetlands.  相似文献   
120.
The effects of phenanthrene(Phe)on the denitrification activity and denitrifying genes(narG,nirS and nosZ)were evaluated by dose-response experiments in sediments of Dagu River Estuary(DRE)and Jiaozhou Bay(JZB).The results showed that potential denitrification activity(PDA),N2O,NO3−and NO2−reduction rates of both areas were inhibited with an increase of Phe concentrations.The PDA,N2O,NO3−and NO2−reduction rates of both areas was highest and lowest in the control(DRE:0.453,0.427,7.439 and 3.222mgNkg−1 h−1,JZB:0.592,0.555,8.470 and 3.793mgNkg−1 h−1)and highest Phe amended treatments(DRE:0.069,0.001,4.486,and 1.563 mgNkg−1 h−1;JZB:0.114,0.024,5.527 and 2.200 mgNkg−1 h−1).The inhibition rate of PDA was highest,follow by NO2−reduction and then NO3−reduction.Moreover,with the increasing of Phe concentrations,total bacteria count and the abundance of denitrifying genes were decreased.And N2O accumulation was promoted with the addition of Phe for both areas.Based on the comparison of EC50 values,denitrifiers harboring three genes were more sensitive to Phe than PDA,and denitrifiers harboring nirS gene were more sensitive,followed by nosZ gene,and then narG gene.Furthermore,according to correlation analysis,the relative abundance of denitrifying genes was much more positively correlated with PDA,NO3−and NO2−reduction than total bacteria count.In addition,the denitrification activity and total bacteria count in JZB were more inhibited than that of DRE.This study is useful for understanding the impact of Phe pollution on denitrification in estuary and marine sediments,with profound implications for the management of aquatic ecosystems regarding eutrophication(N-removal)and greenhouse effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号