首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4747篇
  免费   841篇
  国内免费   1000篇
测绘学   178篇
大气科学   639篇
地球物理   1806篇
地质学   1995篇
海洋学   761篇
天文学   34篇
综合类   187篇
自然地理   988篇
  2024年   28篇
  2023年   71篇
  2022年   118篇
  2021年   185篇
  2020年   207篇
  2019年   211篇
  2018年   182篇
  2017年   191篇
  2016年   195篇
  2015年   221篇
  2014年   221篇
  2013年   299篇
  2012年   228篇
  2011年   268篇
  2010年   214篇
  2009年   311篇
  2008年   306篇
  2007年   298篇
  2006年   352篇
  2005年   291篇
  2004年   269篇
  2003年   232篇
  2002年   218篇
  2001年   187篇
  2000年   178篇
  1999年   178篇
  1998年   156篇
  1997年   149篇
  1996年   110篇
  1995年   99篇
  1994年   88篇
  1993年   83篇
  1992年   40篇
  1991年   46篇
  1990年   25篇
  1989年   25篇
  1988年   19篇
  1987年   25篇
  1986年   10篇
  1985年   10篇
  1984年   11篇
  1983年   7篇
  1982年   7篇
  1981年   3篇
  1980年   8篇
  1979年   4篇
  1978年   1篇
  1977年   3篇
排序方式: 共有6588条查询结果,搜索用时 31 毫秒
991.
In 1997–98, unique critical beach erosion led to structural failure along the Penarth, South Wales, UK coastline and anthropogenic activities, such as the construction of the Cardiff Bay Barrage and offshore marine aggregate dredging, were suggested as causes. The time‐frame of significant erosion was between 1995 and 1997 and forcing agents (extreme sea level and wind direction) and shoreline indicators (mean beach level and MHW) were analysed in order to assess change. Water level analysis showed that although there was no significant difference between actual and predicted mean sea levels, extreme sea levels at that time were significantly higher (t = 3·305; d.f. = 8; p < 0·05). Three wind direction analyses (annual mean, mean annual maximum gust and mean annual maximum gust ≥28 kn) between 1995 and 1997 also showed significant differences (p < 0·05). All comprised more easterly components which meant they approached the beach from the sea. Furthermore, gusts ≥28 kn from the northeast quadrant, that is, 0° to 90° true, were significantly more frequent during these years (t = 3·674; d.f. = 8; p < 0·01). Justification of statistical significances was established and there was supporting evidence of unusual meteorological conditions at that time. Relationships showed correlation between forcing agents (extreme sea level and wind direction) and shoreline indicators (mean beach level and Mean High Water). Furthermore, regression analysis showed winds from the northeast quadrant resulted in steeper longshore gradients, as a consequence of beach material loss. Therefore, it was concluded that the critical erosion of Penarth beach between 1995 and 1997 was caused by increased wave attack from the northeast and southeast quadrants, generated by unique significant changes in wind direction and extreme sea levels. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
992.
The saltation–abrasion model predicts rates of river incision into bedrock as an explicit function of sediment supply, grain size, boundary shear stress and rock strength. Here we use this experimentally calibrated model to explore the controls on river longitudinal profile concavity and relief for the simple but illustrative case of steady‐state topography. Over a wide range of rock uplift rates we find a characteristic downstream trend, in which upstream reaches are close to the threshold of sediment motion with large extents of bedrock exposure in the channel bed, while downstream reaches have higher excess shear stresses and lesser extents of bedrock exposure. Profile concavity is most sensitive to spatial gradients in runoff and the rate of downstream sediment fining. Concavity is also sensitive to the supply rate of coarse sediment, which varies with rock uplift rate and with the fraction of the total sediment load in the bedload size class. Variations in rock strength have little influence on profile concavity. Profile relief is most sensitive to grain size and amount of runoff. Rock uplift rate and rock strength influence relief most strongly for high rates of rock uplift. Analysis of potential covariation of grain size with rock uplift rate and rock strength suggests that the influence of these variables on profile form could occur in large part through their influence on grain size. Similarly, covariation between grain size and the fraction of sediment load in the bedload size class provides another indirect avenue for rock uplift and strength to influence profile form. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
993.
A well-controlled 3-D experiment with pre-defined block heterogeneities is conducted, where neutron tomography is used to map 3-D water distribution after two successive drainage steps. The material and hydraulic properties of the two sands are first measured in the laboratory with multistep outflow experiments. Additionally, the pore structure of the sands is acquired by means of image analysis of synchrotron tomography data and the structure is used for pore-scale simulation of one- and two-phase flow with Lattice-Boltzmann methods. This gives us another set of material and hydraulic parameters of the sands. The two sets of hydraulic properties (from the lab scale and from the pore scale) are then used in numerical simulations of the 3-D experiment.  相似文献   
994.
Variations in the morphology of a high‐level footpath are characterized using a new approach that relates footpath morphology to six terrain units defined jointly by two contrasting plant communities (U7 grass–heath communities dominated by Nardus stricta and Carex bigelowii, and U10 moss–heath communities dominated by Carex bigelowii and Racomitrium lanuginosum) and by the contrasting textural characteristics of underlying mineral soils developed on schist, granite and quartzite. All six terrain units are characterized by distinct footpath morphologies. The most critical factor affecting footpath morphology is the shear strength of the vegetation mat and underlying root zone. Vegetation mat shear strength was measured using a specially constructed shear rake. On all three lithologies, median shear strengths for U7 communities significantly exceed those for U10 communities, so that pathways on the former are significantly narrower and deeper than those developed on the latter. Adjacent zones of damaged or modified vegetation cover are also wider on U10 communities. The role of mineral soil (regolith) texture and thus underlying lithology in controlling footpath morphology is more complex. For soils with abundant fines, granite soils have lower shearing resistance than schist soils, and are associated with wider footpaths. Footpaths are also wide on clast‐supported quartzite regolith, which has high shearing resistance: pathways are trapezoidal in cross‐section in areas of U7 vegetation cover, but footpaths are very broad and diffuse in areas of U10 cover. Pathway depths are limited by increasing shear and compressive strength with depth. Implications of these findings for further research and management strategies are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
995.
Flume experiments simulating concentrated runoff were carried out on remolded silt loam soil samples (0·36 × 0·09 × 0·09 m3) to measure the effect of rainfall‐induced soil consolidation and soil surface sealing on soil erosion by concentrated flow for loess‐derived soils and to establish a relationship between soil erodibility and soil bulk density. Soil consolidation and sealing were simulated by successive simulated rainfall events (0–600 mm of cumulative rainfall) alternated by periods of drying. Soil detachment measurements were repeated for four different soil moisture contents (0·04, 0·14, 0·20 and 0·31 g g?1). Whereas no effect of soil consolidation and sealing is observed for critical flow shear stress (τcr), soil erodibility (Kc) decreases exponentially with increasing cumulative rainfall depth. The erosion‐reducing effect of soil consolidation and sealing decreases with a decreasing soil moisture content prior to erosion due to slaking effects occurring during rapid wetting of the dry topsoil. After about 100 mm of rainfall, Kc attains its minimum value for all moisture conditions, corresponding to a reduction of about 70% compared with the initial Kc value for the moist soil samples and only a 10% reduction for the driest soil samples. The relationship estimating relative Kc values from soil moisture content and cumulative rainfall depth predicts Kc values measured on a gradually consolidating cropland field in the Belgian Loess Belt reasonably well (MEF = 0·54). Kc is also shown to decrease linearly with increasing soil bulk density for all moisture treatments, suggesting that the compaction of thalwegs where concentrated flow erosion often occurs might be an alternative soil erosion control measure in addition to grassed waterways and double drilling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
996.
A new approach is proposed to simulate splash erosion on local soil surfaces. Without the effect of wind and other raindrops, the impact of free‐falling raindrops was considered as an independent event from the stochastic viewpoint. The erosivity of a single raindrop depending on its kinetic energy was computed by an empirical relationship in which the kinetic energy was expressed as a power function of the equivalent diameter of the raindrop. An empirical linear function combining the kinetic energy and soil shear strength was used to estimate the impacted amount of soil particles by a single raindrop. Considering an ideal local soil surface with size of 1 m × 1 m, the expected number of received free‐falling raindrops with different diameters per unit time was described by the combination of the raindrop size distribution function and the terminal velocity of raindrops. The total splash amount was seen as the sum of the impact amount by all raindrops in the rainfall event. The total splash amount per unit time was subdivided into three different components, including net splash amount, single impact amount and re‐detachment amount. The re‐detachment amount was obtained by a spatial geometric probability derived using the Poisson function in which overlapped impacted areas were considered. The net splash amount was defined as the mass of soil particles collected outside the splash dish. It was estimated by another spatial geometric probability in which the average splashed distance related to the median grain size of soil and effects of other impacted soil particles and other free‐falling raindrops were considered. Splash experiments in artificial rainfall were carried out to validate the availability and accuracy of the model. Our simulated results suggested that the net splash amount and re‐detachment amount were small parts of the total splash amount. Their proportions were 0·15% and 2·6%, respectively. The comparison of simulated data with measured data showed that this model could be applied to simulate the soil‐splash process successfully and needed information of the rainfall intensity and original soil properties including initial bulk intensity, water content, median grain size and some empirical constants related to the soil surface shear strength, the raindrop size distribution function and the average splashed distance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
997.
Several studies have shown that the dominant streamflow generation mechanism in a river basin can leave distinct geomorphological signatures in basin topography. In particular, it has been suggested previously that basins generated by groundwater discharge tend to have a larger hypsometric integral than surface runoff basins because fluvial erosion is more focused in the valleys where groundwater discharge tends to occur. In this analysis, we aim to clarify this relationship by developing an alternative method to quantify the effects of streamflow generation mechanisms on basin hypsometry and by using a numerical model that can generate streamflow by different processes to evaluate the sensitivity of the results to the hydrological and geomorphological properties of the basin. The model results suggest that the hypsometric characteristics that are usually associated with groundwater discharge basins, such as a larger hypsometric integral, occur primarily when drainage networks are still advancing in the watershed. During later stages of development, an additional factor such as lithological controls or a distinct geomorphological process would be needed to preserve these features. The model results also show that the hypsometric effects are stronger when the parameters of the fluvial erosion process promote the influence of small discharge rates. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
998.
The process basis of existing soil‐erosion models is shown to be ill‐founded. The existing literature builds directly or indirectly on Bennett's (1974) paper, which provided a blueprint for integrated catchment‐scale erosion modelling. Whereas Bennett recognized the inherent assumptions of the approach suggested, subsequent readings of the paper have led to a less critical approach. Most notably, the assumption that sediment movement could be approximated by a continuity equation that related to transport in suspension has produced a series of submodels that assume that all movement occurs in suspension. For commonly occurring conditions on hillslopes, this case is demonstrably untrue both on theoretical grounds and from empirical observations. Elsewhere in the catchment system, it is only partially true, and the extent to which the assumption is reasonable varies both spatially and temporally. A second ground‐breaking paper – that of Foster and Meyer (1972) – was responsible for subsequent uncritical application of a first‐order approximation to deposition based on steady‐state analysis and again a weak empirical basis. We describe in this paper an alternative model (Mahleran – Model for Assessing Hillslope‐Landscape Erosion, Runoff And Nutrients) based upon particle‐travel distance that overcomes existing limitations by incorporating parameterizations of the different detachment and transport mechanisms that occur in water erosion in hillslopes and small catchments. In the second paper in the series, we consider the sensitivity and general behaviour of Mahleran , and test it in relation to data from a large rainfall‐simulation experiment. The third paper of the sequence evaluates the model using data from plots of different sizes in monitored rainfall events. From this evaluation, we consider the scaling characteristics of the current form of Mahleran and suggest that integrated modelling, laboratory and field approaches are required in order to advance the state of the art in soil‐erosion modelling. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
999.
Several mechanisms contribute to streambank failure including fluvial toe undercutting, reduced soil shear strength by increased soil pore‐water pressure, and seepage erosion. Recent research has suggested that seepage erosion of noncohesive soil layers undercutting the banks may play an equivalent role in streambank failure to increased soil pore‐water pressure. However, this past research has primarily been limited to laboratory studies of non‐vegetated banks. The objective of this research was to utilize the Bank Stability and Toe Erosion Model (BSTEM) in order to determine the importance of seepage undercutting relative to bank shear strength, bank angle, soil pore‐water pressure, and root reinforcement. The BSTEM simulated two streambanks: Little Topashaw Creek and Goodwin Creek in northern Mississippi. Simulations included three bank angles (70° to 90°), four pore‐water pressure distributions (unsaturated, two partially saturated cases, and fully saturated), six distances of undercutting (0 to 40 cm), and 13 different vegetation conditions (root cohesions from 0·0 to 15·0 kPa). A relative sensitivity analysis suggested that BSTEM was approximately three to four times more sensitive to water table position than root cohesion or depth of seepage undercutting. Seepage undercutting becomes a prominent bank failure mechanism on unsaturated to partially saturated streambanks with root reinforcement, even with undercutting distances as small as 20 cm. Consideration of seepage undercutting is less important under conditions of partially to fully saturated soil pore‐water conditions. The distance at which instability by undercutting became equivalent to instability by increased soil pore‐water pressure decreased as root reinforcement increased, with values typically ranging between 20 and 40 cm at Little Topashaw Creek and between 20 and 55 cm at Goodwin Creek. This research depicts the baseline conditions at which seepage undercutting of vegetated streambanks needs to be considered for bank stability analyses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
1000.
Based on data from 35 stations on the tributaries of the Yellow River, annual specific sediment yield (Ys) in eight grain size fractions has been related to basin‐averaged annual sand–dust storm days (Dss) and annual precipitation (Pm) to reveal the influence of eolian and fluvial processes on specific sediment yield in different grain size fractions. The results show that Ys in fine grain size fractions has the highest values in the areas dominated by the coupled wind–water process. From these areas to those dominated by the eolian process or to those dominated by the fluvial process, Ys tends to decrease. For relatively coarse grain size fractions, Ys has monotonic variation, i.e. with the increase in Dss or the decrease in Pm, Ys increases. This indicates that the sediment producing behavior for fine sediments is different from that for relatively coarse sediments. The results all show that Ys for relatively coarse sediments depends on the eolian process more than on the fluvial process, and the coarser the sediment fractions the stronger the dependence of the Ys on the eolian process. The YsDss and YsPm curves for fine grain size fractions show some peaks and the fitted straight lines for YsDss and YsPm relationships for relatively coarse grain size fractions show some breaks. Almost all these break points may be regarded as thresholds. These thresholds are all located in the areas dominated by the coupled wind–water process, indicating that these areas are sensitive for erosion and sediment production, to which more attention should be given for the purpose of erosion and sediment control. A number of regression equations were established, based which the effect of rainfall, sand–dust storms and surface material grain size on specific sediment yield can be assessed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号