首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2194篇
  免费   526篇
  国内免费   456篇
测绘学   209篇
大气科学   400篇
地球物理   816篇
地质学   697篇
海洋学   544篇
天文学   142篇
综合类   177篇
自然地理   191篇
  2024年   5篇
  2023年   21篇
  2022年   35篇
  2021年   49篇
  2020年   59篇
  2019年   83篇
  2018年   54篇
  2017年   78篇
  2016年   81篇
  2015年   84篇
  2014年   104篇
  2013年   149篇
  2012年   131篇
  2011年   137篇
  2010年   135篇
  2009年   141篇
  2008年   140篇
  2007年   208篇
  2006年   166篇
  2005年   136篇
  2004年   131篇
  2003年   107篇
  2002年   107篇
  2001年   91篇
  2000年   72篇
  1999年   95篇
  1998年   83篇
  1997年   73篇
  1996年   74篇
  1995年   61篇
  1994年   66篇
  1993年   48篇
  1992年   47篇
  1991年   37篇
  1990年   18篇
  1989年   26篇
  1988年   10篇
  1987年   13篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1954年   1篇
排序方式: 共有3176条查询结果,搜索用时 125 毫秒
51.
AVA(Amplitude Versus Angle)技术是基于常规介质模型(均匀各向同性介质模型)发展起来的,由于忽略了储层的孔隙结构和充填流体的影响,造成AVA特征中是部分对地震波能量的吸收和衰减作用反映不足.从振幅特征方程的实际应用出发,建立起各参数与常规岩性参数之间的关系.以Gassmann方程与Biot理论为基础,推导出振幅特征方程中弹性参数与常规岩性、储层参数(如:纵波速度、横波速度、密度、孔隙度、流体参数Kf)之间的转化关系式,详细研究饱和流体多孔介质模型中的AVA特征,比较该介质模型与常规介质模型在AVA特征上的差异,并将饱和流体多孔介质AVA技术应用于川西凹陷深层须家河组储层预测,通过多波AVA储层参数的反演研究,为直接利用地震资料进行储层识别并进一步识别其流体特征提供了一种有力手段.  相似文献   
52.
波流共存场中多向随机波浪传播变形数学模型   总被引:1,自引:0,他引:1       下载免费PDF全文
基于波作用量守恒方程建立了波流共存场中多向随机波浪传播变形数学模型,模型中考虑了波浪绕射的影响和水流引起的波浪弥散多普勒效应,应用包含水流和地形影响的激破波模式计算波浪破碎的能量耗散,采用一阶上迎风有限差分格式离散控制方程。分别计算了有无近岸流情况下单向和多向随机波浪的波高分布,考虑水流影响的数值计算结果与物理模型实验数据吻合良好,比较分析表明,所建立的数学模型能够复演由于离岸流引起的波高增大,可用于波流共存场多向随机波浪传播变形的模拟和预报。  相似文献   
53.
针对如何减小数值求解对流输运方程耗散误差的问题,引进断面计算浓度的概念来计算河段平均浓度,提出了非充分掺混模式的有限控制体积法离散对流输运方程的新算法,据此构建了模拟流域内的水源组成以及不同水源在流域内的时空变化情况的流域来水组成模型。通过数值试验与具体实例验证,结果表明所提出的非充分掺混模式的新算法可有效地提高流域来水模型的计算精度。  相似文献   
54.
In this paper, an inverse mapping is used to transform the previously-derived analytical solutions from a local elliptical coordinate system into a conventional Cartesian coordinate system. This enables a complete set of exact analytical solutions to be derived rigorously for the pore-fluid velocity, stream function, and excess pore-fluid pressure around and within buried inclined elliptic inclusions in pore-fluid-saturated porous rocks. To maximize the application range of the derived analytical solutions, the focal distance of an ellipse is used to represent the size of the ellipse, while the length ratio of the long axis to the short one is used to represent the geometrical shape of the ellipse. Since the present analytical solutions are expressed in a conventional Cartesian coordinate system, it is convenient to investigate, both qualitatively and quantitatively, the distribution patterns of the pore-fluid flow and excess pressure around and within many different families of buried inclined elliptic inclusions. The major advantage in using the present analytical solution is that they can be conveniently computed in a global Cartesian coordinate system, which is widely used in many scientific and engineering computations. As an application example, the present analytical solutions have been used to investigate how the dip angle of an inclined elliptic inclusion affects the distribution patterns of the pore-fluid flow and excess pore-fluid pressure when the permeability ratio of the elliptic inclusion is of finite but nonzero values.  相似文献   
55.
We deal here with the efficient starting points for Kepler's equation in the special case of nearly parabolic orbits. Our approach provides with very simple formulas that allow calculating these points on a scientific vest-pocket calculator. Moreover, srtarting with these points in the Newton's method we can calculate a root of Kepler's equation with an accuracy greater than 0.001 in 0–2 iterations. This accuracy holds for the true anomaly || 135° and |e – 1| 0.01. We explain the reason for this effect also.Dedicated to the memory of Professor G.N. Duboshin (1903–1986).  相似文献   
56.
The classic Lagrange's expansion of the solutionE(e, M) of Kepler's equation in powers of eccentricity is extended to highly eccentric orbits, 0.6627 ... <e<1. The solutionE(e, M) is developed in powers of (e–e*), wheree* is a fixed value of the eccentricity. The coefficients of the expansion are given in terms of the derivatives of the Bessel functionsJ n (ne). The expansion is convergent for values of the eccentricity such that |e–e*|<(e*), where the radius of convergence (e*) is a positive real number, which is calculated numerically.  相似文献   
57.
We consider the Hill's equation: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca% WGKbWaaWbaaSqabeaacaaIYaaaaOGaeqOVdGhabaGaamizaiaadsha% daahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWGTbGaai% ikaiaad2gacqGHRaWkcaaIXaGaaiykaaqaaiaaikdaaaGaam4qamaa% CaaaleqabaGaaGOmaaaakiaacIcacaWG0bGaaiykaiabe67a4jabg2% da9iaaicdaaaa!4973!\[\frac{{d^2 \xi }}{{dt^2 }} + \frac{{m(m + 1)}}{2}C^2 (t)\xi = 0\]Where C(t) = Cn (t, {frbuilt|1/2}) is the elliptic function of Jacobi and m a given real number. It is a particular case of theame equation. By the change of variable from t to defined by: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaOWaaiqaaq% aabeqaamaalaaajaaybaGaamizaGGaaiab-z6agbqaaiaadsgacaWG% 0baaaiabg2da9OWaaOaaaKaaGfaacaGGOaqcKbaG-laaigdajaaycq% GHsislkmaaleaajeaybaGaaGymaaqaaiaaikdaaaqcaaMaaeiiaiaa% bohacaqGPbGaaeOBaOWaaWbaaKqaGfqabaGaaeOmaaaajaaycqWFMo% GrcqWFPaqkaKqaGfqaaaqcaawaaiab-z6agjab-HcaOiab-bdaWiab% -LcaPiab-1da9iab-bdaWaaakiaawUhaaaaa!51F5!\[\left\{ \begin{array}{l}\frac{{d\Phi }}{{dt}} = \sqrt {(1 - {\textstyle{1 \over 2}}{\rm{ sin}}^{\rm{2}} \Phi )} \\\Phi (0) = 0 \\\end{array} \right.\]it is transformed to the Ince equation: (1 + · cos(2)) y + b · sin(2) · y + (c + d · cos(2)) y = 0 where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaadggacq% GH9aqpcqGHsislcaWGIbGaeyypa0JcdaWcgaqaaiaaigdaaeaacaaI% ZaGaaiilaiaabccacaWGJbGaeyypa0Jaamizaiabg2da9aaacaqGGa% WaaSaaaKaaGfaacaWGTbGaaiikaiaad2gacqGHRaWkcaaIXaGaaiyk% aaqaaiaaiodaaaaaaa!4777!\[a = - b = {1 \mathord{\left/{\vphantom {1 {3,{\rm{ }}c = d = }}} \right.\kern-\nulldelimiterspace} {3,{\rm{ }}c = d = }}{\rm{ }}\frac{{m(m + 1)}}{3}\]In the neighbourhood of the poles, we give the expression of the solutions.The periodic solutions of the Equation (1) correspond to the periodic solutions of the Equation (3). Magnus and Winkler give us a theory of their existence. By comparing these results to those of our study in the case of the Hill's equation, we can find the development in Fourier series of periodic solutions in function of the variable and deduce the development of solutions of (1) in function of C(t).  相似文献   
58.
Hydrocyclones are widely used in the mining and chemical industries. An attempt has been made in this study, to develop a CFD (computational fluid dynamics) model, which is capable of predicting the flow patterns inside the hydrocyclone, including accurate prediction of flow split as well as the size of the air-core. The flow velocities and air-core diameters are predicted by DRSM (differential Reynolds stress model) and LES (large eddy simulations) models were compared to experimental results. The predicted water splits and air-core diameter with LES and RSM turbulence models along with VOF (volume of fluid) model for the air phase, through the outlets for various inlet pressures were also analyzed. The LES turbulence model led to an improved turbulence field prediction and thereby to more accurate prediction of pressure and velocity fields. This improvement was distinctive for the axial profile of pressure, indicating that air-core development is principally a transport effect rather than a pressure effect.  相似文献   
59.
Ice and snow have often helped physicists understand the world. On the contrary it has taken them a very long time to understand the flow of the glaciers. Naturalists only began to take an interest in glaciers at the beginning of the 19th century during the last phase of glacier advances. When the glacier flow from the upslope direction became obvious, it was then necessary to understand how it flowed. It was only in 1840, the year of the Antarctica ice sheet discovery by Dumont d'Urville, that two books laid the basis for the future field of glaciology: one by Agassiz on the ice age and glaciers, the other one by canon Rendu on glacier theory. During the 19th century, ice flow theories, adopted by most of the leading scientists, were based on melting/refreezing processes. Even though the word ‘fluid’ was first used in 1773 to describe ice, more the 130 years would have to go by before the laws of fluid mechanics were applied to ice. Even now, the parameter of Glen's law, which is used by glaciologists to model ice deformation, can take a very wide range of values, so that no unique ice flow law has yet been defined. To cite this article: F. Rémy, L. Testut, C. R. Geoscience 338 (2006).  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号