首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   6篇
  国内免费   17篇
大气科学   9篇
地球物理   23篇
地质学   16篇
海洋学   24篇
天文学   5篇
综合类   1篇
自然地理   3篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有81条查询结果,搜索用时 31 毫秒
21.
The global diapycnal transport in the ocean interior is one of the significant branches to return the deep water back toward near-surface. However, the amount of the diapycnal transport and the seasonal variations are not determined yet. This paper estimates the dissipation rate and the associated diapycnal transports at 500 m, 750 m and 1 000 m depth throughout the global ocean from the wide-spread Argo profiles, using the finescale parameterizations and classic advection-diff usion balance. The net upwelling is ~5.2±0.81 Sv (Sverdrup) which is approximately one fifth in magnitude of the formation of the deep water. The Southern Ocean is the major region with the upward diapycnal transport, while the downwelling emerges mainly in the northern North Atlantic. The upwelling in the Southern Ocean accounts for over 50% of the amount of the global summation. The seasonal cycle is obvious at 500 m and vanishes with depth, indicating the energy source at surface. The enhancement of diapycnal transport occurs at 1000min the Southern Ocean, which is pertinent with the internal wave generation due to the interaction between the robust deep-reaching flows and the rough topography. Our estimates of the diapycnal transport in the ocean interior have implications for the closure of the oceanic energy budget and the understanding of global Meridional Overturning Circulation.  相似文献   
22.
This study presents an analysis of the CTD data and the turbulent microstructure data collected in 2014, the turbulent mixing environment above the Atlantic Water(AW) around the Chukchi Borderland region is studied.Surface wind becomes more efficient in driving the upper ocean movement along with the rapid decline of sea ice,thus results in a more restless interior of the Arctic Ocean. The turbulent dissipation rate is in the range of4.60×10~(–10)~(–3.31×10~(–9) W/kg with a mean value of 1.33×10~(–9) W/kg, while the diapycnal diffusivity is in the range of1.45×10~(–6)–1.46×10~(–5)m~2/s with a mean value of 4.84×10~(–6) m~2/s in 200–300 m(above the AW). After investigating on the traditional factors(i.e., wind, topography and tides) that may contribute to the turbulent dissipation rate, the results show that the tidal kinetic energy plays a dominating role in the vertical mixing above the AW. Besides, the swing of the Beaufort Gyre(BG) has an impact on the vertical shear of the geostrophic current and may contribute to the regional difference of turbulent mixing. The parameterized method for the double-diffusive convection flux above the AW is validated by the direct turbulent microstructure results.  相似文献   
23.
Ground level vapour (GLV) samples were collected at Roorkee, Uttarakhand, India using two methods: liquid condensation (LC) at 0 °C and cryogenic trap (CT) at ?78 °C for the period 2009–2011. The study reveals that there is a considerable fluctuation in stable isotopic composition of GLV throughout the year. The study area receives complex moisture source during different seasons, which is evident from the moisture flux received during different seasons. The isotopic composition of the GLV in both methods shows depleted nature during rainout process. CT method shows exact isotopic signature of GLV because of maximum trapping of air moisture and its condensation, whereas LC method shows depleted or enriched character because of the prevalence of kinetic and diffusive fractionation. The d value shows that LC method acts as magnifier of the CT method and clearly shows seasonal effect than the clustered CT method. Hence, to decipher the original isotopic signature of GLV, isotopic composition of GLVLC can be converted to GLVCT by deriving an empirical relationship with changing season and locations. Meteorological parameters show varied behaviour with GLVCT and LC because of moisture sources in all seasons. The GLVCT and LC method shows significant correlation with meteorological parameters when the region is dominated by single moisture source. The GLVLC method magnifies the correlation with meteorological parameters when the region is influenced by more than one source. The study shows that the GLVLC methods can be used in place of GLVCT when the objective is to understand the influence of different moisture sources on GLV. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
24.
T. Moramarco  V. P. Singh 《水文研究》2002,16(17):3419-3435
The kinematic‐wave and diffusive‐wave approximations were investigated for unsteady overland flow resulting from spatially varying rainfall excess. Three types of boundary conditions were adopted: zero flow at the upstream end, and critical flow and zero depth‐gradient at the downstream end. Errors were derived by comparing the dimensionless profiles of the flow depth over the plane with those computed from the dynamic‐wave solution. It was found that the mean errors for both the approximations were independent of the type of rainfall excess distribution for KF02 > 5, where K is the kinematic‐wave number and F0 is the Froude number. Therefore, the regions (KF02, F0) where the kinematic‐wave and diffusive‐wave solutions would be fairly accurate and for any distribution of spatially varying rainfall, were characterized. The kinematic‐wave approximation was reasonably accurate, with a mean error of less than 5% and for the critical depth at the downstream end, for KF02 ≥ 20 with F0 ≤ 1; if the rainfall excess was concentrated in a portion of the plane, the field where the kinematic‐wave solution was found accurate, it was more limited and characterized for KF02 > 35 with F0 ≤ 1. The diffusive‐wave solution was in good agreement with the dynamic‐wave solution with a mean error of less than 5%, in the flow depth, for KF02 ≥ 15 with F0 ≤ 1; for rainfall excess concentrated in a portion of the plane, the accuracy of the diffusion wave solution was in a region more restricted and defined for KF02 ≥ 30 with F0 ≤ 1. For zero‐depth gradient at the downstream end, the accuracy field of the kinematic‐wave was found to be greater and characterized for KF02 > 10 with F0 ≤ 1; for rainfall excess concentrated in a portion of the plane, the region was smaller and defined for KF02 > 15 with F0 ≤ 1. The diffusive‐wave solution was found accurate in the region defined for KF02 > 7·5, whereas for rainfall excess concentrated in a portion of the plane, the field of accuracy was for KF02 > 12·5 with F0 ≤ 1. The lower limits of the regions, defined on KF02, can be considered generally valid for both approximations, but for F0 < 1 smaller lower limits were also characterized. Finally, the accuracy of these approximations was influenced significantly by the downstream boundary condition. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
25.
Garnet–orthopyroxene geothermometry and geobarometry are widely used in high-grade metamorphic terranes. These techniques may provide an insight into pressure–temperature ( P–T   ) paths followed by such terranes, provided various sources of uncertainty are taken into consideration. Analytical uncertainties, particularly with regard to their effect on ferric iron estimation in orthopyroxene, can contribute to the overall uncertainty on the calculated P–T  . Additionally, retrograde cation diffusion can affect the Fe–Mg distribution between coexisting garnet and orthopyroxene, consequently affecting P–T  estimates. Recognizing the importance of these effects, and care with both the choice of the grains analysed and analytical techniques, may lead to more reliable P–T  estimation.  相似文献   
26.
Based on an analytical model, we determined the temporal dynamics of the spectral shape and spatial distribution of the particles that were impulsively (in time) injected with a specified spectrum in the vicinity of a moving plane shock front. We obtained a condition to determine the influence of the shock front on the particle propagation, where the spatial diffusion coefficient of the particles plays a major role. Diffusive shock acceleration is shown to strongly affect low-energy particles (the intensity maximum coincides spatially with the shock front; hard and soft spectral regions are formed in the spectrum) and weakly affect high-energy particles (the time at which the intensity reaches its maximum is well ahead of the shock arrival time; the spectral shape does not change). In events accompanied by a significant increase in the turbulence level, the influence of the shock front on high-energy particles can change from weak to strong. This change shows up in the spatial distribution and spectral shape of the particles. The dynamics of the particle intensity, calculated with the diffusion coefficients that were determined in accordance with the quasi-linear theory for measured turbulence levels, qualitatively corresponds to the observed solar energetic-particle intensity.  相似文献   
27.
1. Introduction Ocean General Circulation Models (OGCMs) arekey tools in the assessment of the future ocean up-take of atmospheric greenhouse gases and heat. Fur-thermore, whereas nature experiences one realisationof the climate state, climate models can be used as alaboratory to produce a multitude of climate realisa-tions, and by that contribute to the understanding ofthe variability and stability properties of the system.It is, in this respect, crucial to evaluate the climatemodels ag…  相似文献   
28.
Vesiculation and crystallization in ascending magmas are key processes that control the eruption behavior, and they interplay each other through the water exsolution process. We conducted a numerical study in order to quantitatively understand the water exsolution and crystallization processes in natural eruptions (decompression history is unknown) and in laboratory experiments (the amount of decompression is constant with time). The numerical results, which take into account homogeneous or heterogeneous nucleation and growth of bubbles with varying diffusivity of water, viscosity, and the amount of decompression, provide a quantitative understanding of their control on bubble formation and water exsolution in the constant amount of decompression. The bubble nucleation in the homogeneous nucleation can be divided into two regimes – the diffusion control regime and viscosity control regime – depending on the modified Peclet number and the effective supersaturation. In the cases of both homogeneous and heterogeneous nucleations, the bubble growth is controlled by diffusion or viscosity, depending on the modified Peclet number and bubble number density. The water exsolution rate, which is controlled by the modified Peclet number in the viscosity control regime and by the bubble number density and diffusive driving force in the diffusion control regime, acts as an effective cooling rate in a decompression-induced crystallization process. A comparison of the numerical results with the results of laboratory experiments suggests that water exsolution proceeds by the diffusion-limited growth of bubbles under disequilibrium vesiculation through the heterogeneous nucleation of bubbles, and this in turn controls the crystallization kinetics of microlite with the homogeneous nucleation of microlite and the diffusion-limited growth of crystal. The several orders of variation of microlite number density with the amount of decompression in laboratory experiments can be interpreted as the effect of the amount of decompression on the driving force for the diffusive bubble growth that controls the water exsolution rate.  相似文献   
29.
本研究在太湖梅梁湾采集沉积柱,采用一种自制的毫米级柱状沉积物自动垂向分层切割装置对表层50 mm沉积物进行垂向切割(间隔2 mm),结合高通量测序技术分析沉积物中细菌群落的毫米级垂向分布;同时采用毫米级高分辨透析技术和薄膜扩散梯度技术(DGT)分析溶解态和DGT可获取态铵态氮(NH4+-N)、硝态氮(NO3--N)、Fe、P的垂向分布特征。结果显示,沉积物中细菌群落与溶解态和DGT可获取态氮铁磷浓度在垂向上呈现显著的异质性。细菌硝酸盐还原主要发生在-16~0 mm沉积物深度,这可能导致了溶解态和DGT可获取态NO3--N含量在该沉积物深度的明显减少。细菌铁还原主要分布在-32~-18 mm沉积物深度,细菌硫酸盐还原主要分布在-50~-34 mm的沉积物深度;细菌硫酸盐还原是导致沉积物溶解态和DGT可获取态铁磷浓度从-32 mm随沉积物的深度增加而显著增加的主要原因。本研究加深了对富营养化湖泊沉积物中细菌影响氮磷在垂向上迁移转化的认识。  相似文献   
30.
The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments with or without wind blowing were conducted. According to the experiments, a 3.5 cm DBL is formed above the smoothed sediments at a steady wind field and this thickness is greater than other studies. The observed flux of salt through the DBL is 6% larger than the calculated value from Fick' s first law. The results indicate that molecular diffusion is the dominant mechanism for salt transport through the DBL. The presence of DBL suppresses the hydrodynamic enhancement for matter exchange between sediments and overlying water. Therefore, salts in the sediments of a polder reservoir may influence the water quality chronically.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号