首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   91篇
  国内免费   185篇
大气科学   3篇
地球物理   157篇
地质学   204篇
海洋学   456篇
综合类   71篇
自然地理   59篇
  2024年   3篇
  2023年   6篇
  2022年   15篇
  2021年   24篇
  2020年   20篇
  2019年   21篇
  2018年   29篇
  2017年   33篇
  2016年   25篇
  2015年   29篇
  2014年   48篇
  2013年   51篇
  2012年   37篇
  2011年   53篇
  2010年   35篇
  2009年   58篇
  2008年   32篇
  2007年   53篇
  2006年   61篇
  2005年   40篇
  2004年   29篇
  2003年   26篇
  2002年   34篇
  2001年   25篇
  2000年   23篇
  1999年   17篇
  1998年   18篇
  1997年   15篇
  1996年   13篇
  1995年   6篇
  1994年   6篇
  1993年   11篇
  1992年   13篇
  1991年   9篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   7篇
  1982年   3篇
  1981年   3篇
  1971年   1篇
排序方式: 共有950条查询结果,搜索用时 46 毫秒
831.
Hydrogen gas (H2) may be produced by the anoxic corrosion of steel components in underground structures, such as geological repositories for radioactive waste. In such environments, hydrogen was shown to serve as an electron donor for autotrophic bacteria. High gas overpressures are to be avoided in radioactive waste repositories and, thus, microbial consumption of H2 is generally viewed as beneficial. However, to fully consider this biological process in models of repository evolution over time, it is crucial to determine the in situ rates of microbial hydrogen oxidation and sulfate reduction. These rates were estimated through two distinct in situ experiments, using several measurement and calculation methods. Volumetric consumption rates were calculated to be between 1.13 and 1.93 μmol cm−3 day−1 for H2, and 0.14 and 0.20 μmol cm−3 day−1 for sulfate. Based on the stoichiometry of the reaction, there is an excess of H2 consumed, suggesting that it serves as an electron donor to reduce electron acceptors other than sulfate, and/or that some H2 is lost via diffusion. These rate estimates are critical to evaluate whether biological H2 consumption can negate H2 production in repositories, and to determine whether sulfate reduction can consume sulfate faster than it is replenished by diffusion, which could lead to methanogenic conditions.  相似文献   
832.
Methane hydrate in the South China Sea(SCS)has extensively been considered to be biogenic on the basis of itsδ13C and δD values.Although previous efforts have greatly been made,the contribution of thermogenic oil/gas has still been underestimated.In this study,biomarkers and porewater geochemical parameters in hydrate-free and hydrate-bearing sediments in the Taixinan Basin,the SCS have been measured for evaluating the contribu-tion of petroleum hydrocarbons to the formation of hydrate deposits via a comparative study of their source inputs of organic matters,environmental conditions,and microbial activities.The results reveal the occurrence of C14-C16 branched saturated fatty acids(bSFAs)with relatively high concentrations from sulfate-reducing bacteria(SRBs)in hydrate-bearing sediments in comparison with hydrate-free sediments,which is in accord with the positive δ13C values of dissolved inorganic carbon(DIC),increasing methane concentrations,decreasing alka-linity,and concentration fluctuation of ions(Cl-,Br,SO2-,Ca2+,and Mg2+).These data indicate the relatively active microbial activities in hydrate-bearing sediments and coincident variations of environmental conditions.Carbon isotope compositions of bSFAs(-34.0%o to-21.2%o),n-alkanes(-34.5%o to-29.3%o),and methane(-70.7%o to-69.9%o)jointly demonstrate that SRBs might thrive on a different type of organic carbon rather than methane.Combining with numerous gas/oil reservoirs and hydrocarbon migration channels in the SCS,the occurrence of unresolved complex mixtures(UCMs),odd-even predominance(OEP)values(about 1.0),and biomarker patterns suggest that petroleum hydrocarbons from deep oil/gas reservoirs are the most probable carbon source.Our new results provide significant evidence that the deep oil/gas reservoirs may make a contribution to the formation of methane hydrate deposits in the SCS.  相似文献   
833.
A sewer main serving a large municipal wastewater system ruptured, discharging approximately 3,000,000 gallons (11,355,000 L) of raw human sewage into a multi-branched tidal creek estuary along the US East Coast. The biochemical oxygen demand caused severe hypoxia in the system, causing a large fish kill. The sewage load led to high fecal coliform bacteria concentrations in the creek (maximum of 270,000 CFU 100ml(-1)), which declined in an approximate logarithmic manner over the first few days. The spill caused elevated sediment fecal coliform bacteria and enterococcus counts that declined much more gradually than water column counts. Persistence of relatively high concentrations of fecal indicator bacteria in sediments for several weeks after the spill suggests that sediment sampling should be included in response to major sewage spills. The high concentration of nutrients in the spilled sewage led to several algal blooms. However, nutrient concentrations in the water column declined rapidly, demonstrating the value of conserving marshes because of their pollutant filtration function.  相似文献   
834.
通过细菌的分离培养和土壤性质的测定,分析了念青唐古拉山扎当冰川退缩前沿土壤中可培养细菌的多样性和土壤性质的变化.结果表明:土壤中可培养细菌的数量为104~105CFU.g-1,可培养细菌隶属于α-Proteobacteria、β-Proteobacteria、γ-Proteobacteria、Bacteroidetes和Actinobacteria 5个类群.随冰川退缩年代不同土壤中细菌多样性有明显变化,土壤的C、N含量与距冰川前沿的距离之间呈正相关,即土壤暴露时间越长,C、N含量越高.结果说明,冰川退缩前沿的土壤中存在着丰富的细菌资源,细菌的组成发生着动态的变化,同时也影响着土壤的理化性质.  相似文献   
835.
The lower mandibles of squid in the stomachs of two sperm whales examined at the Tory Channel whaling station in 1963–4 were separated into 11 types according to a system of grouping devised by the authors and based on a key drawn up by M. R. Clarke.  相似文献   
836.
Abstract

Bacterial numbers and production were measured in the upper water column in the winter and spring of 1993 in five water masses surrounding the South Island of New Zealand. Average bacterial numbers and production were found to be higher in spring (8.5 × 105 cells ml?1 and 0.20 mg m3 h?1, respectively) than winter (5.5 × 105 cells ml?1 and 0.05 mg C m3 h?1 respectively). Bacterial production was strongly correlated with chlorophyll a and primary production (P < 0.001) in spring but not in winter. Spring bacterial production and at 10 m depth averaged across 28 stations was 23% of primary production, and with a growth efficency of 40%, may have consumed up to 57% of primary production. Bacterial biomass was greater than phytoplankton biomass for 75% of the 10 m depth comparisons during winter sampling and 44% during the spring sampling. The bacterial biomass was found to represent 24.6–33.5% of the nitrogen in particulate organic matter (<200 μm) supporting the concept that in New Zealand oceanic water masses bacteria are of significant biogeochemical importance.  相似文献   
837.
A suite of exoenzyme activities was assayed in three New Zealand streams draining pasture, native forest, and a pine catchment. There were differences among catchments in activity of three of the five enzymes assayed (cello‐biohydrolase, N‐acetylglucosaminidase, and dihydroxylphenylalanine oxidation). A principal components analysis (PCA) demonstrates that patterns of enzyme activity can be used to separate the three stream types. An experimental addition of algal‐leachate, leaf‐litter leachate, and high dissolved organic carbon (DOC) water from a small seep also resulted in marked shifts in epilithic enzyme activities 1 day after DOC additions. Oxidative enzymes showed a particularly strong response to additions of humic DOC. As for the field samples, a PCA showed large differences among treatments indicating that exoenzyme patterns can be used to examine which DOC sources predominate in different streams. Application of this approach to describing differences among streams will require detailed seasonal sampling together with longer‐term experiments.  相似文献   
838.
通过对神狐海域表层5个沉积物样品进行脂肪酸组成及其碳同位素分布特征测试和研究,结果表明总脂肪酸含量分布为5.14~8.99 μg/g,碳数分布范围从C12到C32,类型包括正构饱和脂肪酸、支链脂肪酸、单不饱和脂肪酸、多不饱和脂肪酸和类异戊二烯酸等计48种;样品中饱和的短链脂肪酸主要来自细菌与浮游生物,而长链饱和脂肪酸来自陆源高等植物,其比例表明研究海域中海洋细菌与浮游生物输入量远远大于陆源高等植物的输入。支链脂肪酸10me16:0与单不饱和脂肪酸18:1ω9、16:1ω9主要来自硫酸盐还原菌,而单不饱和脂肪酸16:1ω7很大可能来源于硫氧化菌,比较相对含量得出神狐海域表层沉积物为还原环境。样品中检测出8种类异戊二烯酸,主要是植烷酸和17,21-ββ二升藿烷酸,及少量的姥鲛酸,推测为叶绿素a和细菌微生物的共同贡献。  相似文献   
839.
From Oct. 1999 to Oct. 2000, the heterotrophic bacterial floras in the industrial marine environment around the Qingdao Power Plant (QPP) and in the unpolluted marine environments were investigated. The results showed that the numbers of the heterotrophic bacteria around QPP were much higher than those in unpolluted environments, and the average numbers in QPP Seawater, QPP Sediment, Unpolluted Seawater and Unpolluted Sediment were 5.4×104cfu(mL)−1, 5.0×105cfug−1, 3.0×102cfu(mL)−1 and 1.3×105cfug−1 respectively. Totally, 118 strains were isolated from QPP and 99 of them were Gram-negative. One hundred and twenty one strains were isolated from the unpolluted environments and 104 of them were Gram-negative. All the Gram-negative bacteria belonged to 13 genera. The distribution of the bacteria was varied in different marine environments. The results showed that the unpolluted marine environments contained much more Vibrio than seawater and sediment around QPP.  相似文献   
840.
The microscopic community of a microtidal sandy sediment on the Swedish west coast was studiedin situat two depths (0·5 and 4 m) on four occasions (January, April, August and October). Biomass of microalgae, bacteria, ciliates and meiofauna, as well as primary and bacterial productivity, were quantified. Meiofaunal grazing on algae and bacteria was measured simultaneously by radiolabelling intact sediment cores. Autotrophic biomass dominated the microbial community at both depths and on all sampling occasions, accounting for 47–87% of the microbial biomass. Meiofauna contributed 10–47%, while bacteria and ciliates together made up less than 6%. The microflora was dominated by attached (epipsammic) diatoms, but occasional ‘ blooms ’ of motile species occurred. Vital cells of planktonic diatoms contributed to benthic algal biomass in spring. Primary productivity exceeded bacterial productivity in April and August at both depths, while the balance was reversed in October and January. Meiofauna grazed between 2 and 12% of the algal biomass per day, and between 0·3 and 37% of the bacterial biomass. Almost an order of magnitude more algal (17–138 mg C m−2) than bacterial (0·1–33 mg C m−2) carbon was grazed daily. At the shallow site, primary productivity always exceeded grazing rates on algae, whereas at the deeper site, grazing exceeded primary productivity in October and January. Bacterial productivity exceeded grazing at both depths on all four occasions. Thus, meiofaunal grazing seasonally controlled microalgal, but not bacterial, biomass. These results suggest that, during summer, only a minor fraction (<10%) of the daily microbenthic primary production appears to enter the ‘ small food web ’ through meiofauna. During spring and autumn, however, a much larger fraction (≈30–60%) of primary production may pass through meiofauna. During winter, meiofaunal grazing is a less important link in the shallow zone, but at sublittoral depths, algal productivity may be limiting, and meiofauna depend on other food sources, such as bacteria and detritus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号