全文获取类型
收费全文 | 2917篇 |
免费 | 321篇 |
国内免费 | 434篇 |
专业分类
测绘学 | 707篇 |
大气科学 | 372篇 |
地球物理 | 620篇 |
地质学 | 959篇 |
海洋学 | 345篇 |
天文学 | 27篇 |
综合类 | 228篇 |
自然地理 | 414篇 |
出版年
2024年 | 29篇 |
2023年 | 71篇 |
2022年 | 131篇 |
2021年 | 181篇 |
2020年 | 159篇 |
2019年 | 168篇 |
2018年 | 93篇 |
2017年 | 127篇 |
2016年 | 108篇 |
2015年 | 86篇 |
2014年 | 118篇 |
2013年 | 214篇 |
2012年 | 143篇 |
2011年 | 125篇 |
2010年 | 118篇 |
2009年 | 177篇 |
2008年 | 189篇 |
2007年 | 216篇 |
2006年 | 175篇 |
2005年 | 166篇 |
2004年 | 149篇 |
2003年 | 140篇 |
2002年 | 97篇 |
2001年 | 106篇 |
2000年 | 71篇 |
1999年 | 60篇 |
1998年 | 64篇 |
1997年 | 44篇 |
1996年 | 34篇 |
1995年 | 26篇 |
1994年 | 28篇 |
1993年 | 13篇 |
1992年 | 6篇 |
1991年 | 7篇 |
1990年 | 4篇 |
1989年 | 4篇 |
1988年 | 7篇 |
1987年 | 3篇 |
1986年 | 3篇 |
1985年 | 1篇 |
1984年 | 3篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1978年 | 2篇 |
1976年 | 2篇 |
排序方式: 共有3672条查询结果,搜索用时 0 毫秒
61.
随着村镇经济建设发展,生活垃圾和工业固体废弃物造成的污染问题日益突出,已经成为制约新农村建设发展和生态文明建设的关键问题,而目前针对乡镇非正规固体废弃物的调查与统计主要依赖全国各乡镇相关部门逐级调查上报,工作量较大。本文基于高分辨率遥感影像,将深度学习模型和条件随机场模型相结合引入到乡镇固体废弃物的提取研究中,探索一种基于深度卷积神经网络的乡镇固体废弃物提取模型。由于固体废弃物在影像上表现为面积小,分布破碎等特点,为了提高工作效率,将模型特分为识别和提取2个部分:① 通过全连接卷积网络(CNN)对固体废弃物进行快速识别判断,筛选感兴趣区域影像块;② 在传统的全卷积神经网络(FCN)的基础上加入条件随机场模型(CRF)提取固体废弃物边界,提高整体分割精度。根据安徽、山西等地区相关部门上报固体废弃物堆放点以及住房与城乡建设部城乡规划管理中心进行野外检查的结果,实验最终识别精度达到86.87%以上;形状提取精度为89.84%,Kappa系数为0.7851,识别与提取精度均优于传统分类方法。同时,该方法已经逐步应用于住房和城乡建设部有关成都、兰州、河北等部分乡镇非正规固体废弃物的核查工作,取得了较为满意的结果。 相似文献
62.
Artificial neural networks are used to predict the micro‐properties of particle flow code in three dimensions (PFC3D) models needed to reproduce macro‐properties of cylindrical rock samples in uniaxial compression tests. Data for the training and verification of the networks were obtained by running a large number of PFC3D models and observing the resulting macro‐properties. Four artificial networks based on two different architectures were used. The networks used different numbers of input parameters to predict the micro‐properties. Multi‐layer perceptron networks using Young's modulus, Poisson's ratio, uniaxial compressive strength, model particle resolution and the maximum‐to‐minimum particle ratio showed excellent performance in both training and verification. Adding one more variable—namely, minimum particle radius—showed degrading performance. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
63.
介绍了一种新的神经网络权值优化算法——粒子群优(Particle Swarm Optimization,PSO)算法,提出了用粒子群神经网络对非线性系统进行系统辨识的构思。仿真实验结果表明,粒子群算法具有比BP算法更强的非线性系统辨识能力和更好的泛化能力。 相似文献
64.
With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantitative analysis of the snow cover in the higher Himalayas. In this study, a nonlinear autoregressive exogenous model, an artificial neural network (ANN), was deployed to predict the snow cover in the Kaligandaki river basin for the next 30 years. Observed climatic data, and snow covered area was used to train and test the model that captures the gross features of snow under the current climate scenario. The range of the likely effects of climate change on seasonal snow was assessed in the Himalayas using downscaled temperature and precipitation change projection from - HadCM3, a global circulation model to project future climate scenario, under the AIB emission scenario, which describes a future world of very rapid economic growth with balance use between fossil and non-fossil energy sources. The results show that there is a reduction of 9% to 46% of snow cover in different elevation zones during the considered time period, i.e., 2Oll to 2040. The 4700 m to 52oo m elevation zone is the most affected area and the area higher than 5200 m is the least affected. Overall, however, it is clear from the analysis that seasonal snow in the Kaligandaki basin is likely to be subject to substantialchanges due to the impact of climate change. 相似文献
65.
为了探索BP网络的参数调整特性,进行了参数α、β的选取对BP算法的收敛速度和模型的稳定性的影响研究。通过BP网络用于气象预测建模的参数调整个例分析表明:参数α、β的取值对BP模型的稳定性无显著影响,但参数值的调整尤其是β值的调整对建模的收敛速度有明显的影响。 相似文献
66.
为提高GPS高程转换的精度,采用广义回归神经网络(GRNN)进行拟合。将控制点的X、Y坐标作为网络输入,高程异常作为网络输出,采用实验数据训练网络,训练完成的网络作为模型进行高程异常预测。结果表明,GRNN方法具有较高的GPS转换精度。 相似文献
67.
为减小对流层误差改正数中系统偏差的影响以提高对流层改正精度,提出了基于神经网络的顾及空间的对流层误差建模模型,该模型的对流层延迟误差改正在网内外精度均达5 cm。 相似文献
68.
Prognosis of TiO2 abundance in lunar soil using a non-linear analysis of Clementine and LSCC data 总被引:1,自引:0,他引:1
Viktor V. Korokhin Vadym G. Kaydash Dmitry G. Stankevich 《Planetary and Space Science》2008,56(8):1063-1078
We suggest a technique to determine the chemical and mineral composition of the lunar surface using artificial neural networks (ANNs). We demonstrate this powerful non-linear approach for prognosis of TiO2 abundance using Clementine UV-VIS mosaics and Lunar Soil Characterization Consortium data. The ANN technique allows one to study correlations between spectral characteristics of lunar soils and composition parameters without any restrictions on the character of these correlations. The advantage of this method in comparison with the traditional linear regression method and the Lucey et al. approaches is shown. The results obtained could be useful for the strategy of analyzing lunar data that will be acquired in incoming lunar missions especially in case of the Chandrayaan-1 and Lunar Reconnaissance Orbiter missions. 相似文献
69.
Machine-learning algorithms are applied to explore the relation between significant flares and their associated CMEs. The
NGDC flares catalogue and the SOHO/LASCO CME catalogue are processed to associate X and M-class flares with CMEs based on
timing information. Automated systems are created to process and associate years of flare and CME data, which are later arranged
in numerical-training vectors and fed to machine-learning algorithms to extract the embedded knowledge and provide learning
rules that can be used for the automated prediction of CMEs. Properties representing the intensity, flare duration, and duration
of decline and duration of growth are extracted from all the associated (A) and not-associated (NA) flares and converted to
a numerical format that is suitable for machine-learning use. The machine-learning algorithms Cascade Correlation Neural Networks
(CCNN) and Support Vector Machines (SVM) are used and compared in our work. The machine-learning systems predict, from the
input of a flare’s properties, if the flare is likely to initiate a CME. Intensive experiments using Jack-knife techniques
are carried out and the relationships between flare properties and CMEs are investigated using the results. The predictive
performance of SVM and CCNN is analysed and recommendations for enhancing the performance are provided. 相似文献
70.