首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   459篇
  免费   83篇
  国内免费   130篇
测绘学   4篇
大气科学   1篇
地球物理   41篇
地质学   177篇
海洋学   385篇
天文学   2篇
综合类   19篇
自然地理   43篇
  2024年   2篇
  2023年   10篇
  2022年   29篇
  2021年   30篇
  2020年   49篇
  2019年   35篇
  2018年   26篇
  2017年   20篇
  2016年   33篇
  2015年   27篇
  2014年   31篇
  2013年   28篇
  2012年   19篇
  2011年   28篇
  2010年   21篇
  2009年   32篇
  2008年   29篇
  2007年   21篇
  2006年   38篇
  2005年   13篇
  2004年   17篇
  2003年   20篇
  2002年   18篇
  2001年   12篇
  2000年   9篇
  1999年   11篇
  1998年   10篇
  1997年   11篇
  1996年   9篇
  1995年   8篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
排序方式: 共有672条查询结果,搜索用时 609 毫秒
31.
新疆哈密地区早泥盆世珊瑚动物群及其地质意义   总被引:2,自引:0,他引:2  
张孟  郑飞  南玲玲  张雄华  黄兴  靳锁锁 《地质通报》2018,37(10):1789-1797
新疆哈密地区下泥盆统发育,南部图拉尔根地区下泥盆统为大南湖组,北部三道白杨沟地区为卓木巴斯套组。在大南湖组中共发现四射珊瑚2属5种,床板珊瑚7属12种,并建立四射珊瑚组合Syringaxon moriense和床板珊瑚组合Pseudofavosites giganteus;在卓木巴斯套组共发现四射珊瑚5属7种,床板珊瑚2属2种,并建立四射珊瑚组合Orthopaterophyllum junggarense和床板珊瑚组合Pachyfavosites junggarensis。通过珊瑚在地层中的分布及组合的时代对比,确定前者的时代为早泥盆世埃姆斯期早期,后者的时代为埃姆斯期中晚期。通过与国内外典型的早泥盆世埃姆斯期珊瑚动物群的对比,认为哈密地区的珊瑚动物具有典型的早泥盆世温带动物群特征,在生物古地理区系上属于北方大区准噶尔-兴安省。  相似文献   
32.
We investigated microphytobenthic photosynthesis at four stations in the coral reef sediments at Heron Reef, Australia. The microphytobenthos was dominated by diatoms, dinoflagellates and cyanobacteria, as indicated by biomarker pigment analysis. Conspicuous algae firmly attached to the sand grains (ca. 100 μm in diameter, surrounded by a hard transparent wall) were rich in peridinin, a marker pigment for dinoflagellates, but also showed a high diversity based on cyanobacterial 16S rDNA gene sequence analysis. Specimens of these algae that were buried below the photic zone exhibited an unexpected stimulation of respiration by light, resulting in an increase of local oxygen concentrations upon darkening. Net photosynthesis of the sediments varied between 1.9 and 8.5 mmol O2 m−2 h−1 and was strongly correlated with Chl a content, which lay between 31 and 84 mg m−2. An estimate based on our spatially limited dataset indicates that the microphytobenthic production for the entire reef is in the order of magnitude of the production estimated for corals. Photosynthesis stimulated calcification at all investigated sites (0.2–1.0 mmol Ca2+ m−2 h−1). The sediments of at least three stations were net calcifying. Sedimentary N2-fixation rates (measured by acetylene reduction assays at two sites) ranged between 0.9 to 3.9 mmol N2 m−2 h−1 and were highest in the light, indicating the importance of heterocystous cyanobacteria. In coral fingers no N2-fixation was measurable, which stresses the importance of the sediment compartment for reef nitrogen cycling.  相似文献   
33.
To investigate whether or not regional–temporal patterns of seagrass habitat use by fishes existed at the Ryukyu Islands (southern Japan), visual surveys were conducted in seagrass beds and adjacent coral reefs in northern, central, and southern Ryukyu Islands, in November 2004, and May, August, and November 2005, the northern region having less extensive seagrass beds compared with the central and southern regions. During the study period, the seagrass beds were utilized primarily by 31 species, the densities of some of the latter differing significantly among regions. With the exception of Apogonidae and Holocentridae, all species were diurnal and could be divided into 6 groups based on seagrass habitat use patterns; (1) permanent residents A (10 species, e.g. Stethojulis strigiventer), juveniles and adults living in seagrass beds as well as other habitats; (2) permanent residents B (5 species, e.g. Calotomus spinidens), juveniles and adults living only or mainly in seagrass beds; (3) seasonal residents A (4 species, e.g. Cheilodipterus quinquelineatus), juveniles living in seagrass beds as well as other habitats; (4) seasonal residents B (6 species, e.g. Lethrinus atkinsoni), juveniles living only or mainly in seagrass beds; (5) transients (5 species, e.g. Parupeneus indicus), occurring in seagrass beds in the course of foraging over a variety of habitats; and (6) casual species (1 species, Acanthurus blochii), occurring only occasionally in seagrass beds. Regarding temporal differences, juvenile densities in each group were high in May and August compared with November in each region, whereas adult densities did not differ drastically in each month. For regional differences, juvenile and adult densities of permanent residents A and B were higher in the southern and central regions than in the northern region. Moreover, some seasonal residents showed possible ontogenetic habitat shift from seagrass beds to coral reefs in each region. These results indicated that seagrass habitat use patterns by fishes changed temporally and regionally and there may be habitat connectivity between seagrass beds and coral reefs via ontogenetic migration in the Ryukyu Islands.  相似文献   
34.
This study analyzed how coral communities change along a gradient of increasing exposure to a mud-discharging river in the Enipein Catchment, Pohnpei, Micronesia. Using video transects, we quantified benthic communities at five sites along a gradient moving away from the river mouth towards the barrier reef. The most river-impacted site was characterized by a high accumulation of mud, low coral cover and low coral diversity. Although coral cover leveled off at ∼400 m from the river mouth to values found at the outer-most sites, coral diversity continued to increase with increasing distance, suggesting that the most distant site was still impacted by the river discharges. Fungiidae, Pavona, Acropora, Pachyseris and Porites rus all significantly increased in cover with distance from the river, while Turbinaria decreased. The combined presence and abundance of these six species groups, together with coral species richness, may help to indicate the effects of terrestrial runoff in similar runoff-exposed settings around Micronesia, whereas coral cover is not a sensitive indicator for river impact. Coral reefs are important resources for the people of Pohnpei. To prevent further degradation of this important resource, an integrated watershed approach is needed to control terrestrial activities.  相似文献   
35.
Terrigenous sediment in the nearshore environment can pose both acute and chronic stresses to coral reefs. The reef flat off southern Molokai, Hawaii, typically experiences daily turbidity events, in which trade winds and tides combine to resuspend terrigenous sediment and transport it alongshore. These chronic turbidity events could play a role in restricting coral distribution on the reef flat by reducing the light available for photosynthesis. This study describes the effects of these turbidity events on the Hawaiian reef coral Montipora capitata using in situ diurnal measurements of turbidity, light levels, and chlorophyll fluorescence yield via pulse-amplitude-modulated (PAM) fluorometry. Average surface irradiance was similar in the morning and the afternoon, while increased afternoon turbidity resulted in lower subsurface irradiance, higher fluorescence yield (ΔF/Fm), and lower relative electron transport rates (rETR). Model calculations based on observed light extinction coeffecients suggest that in the absence of turbidity events, afternoon subsurface irradiances would be 1.43 times higher than observed, resulting in rETR for M. capitata that are 1.40 times higher.  相似文献   
36.
Since the early 1980s, episodes of coral reef bleaching and mortality, due primarily to climate-induced ocean warming, have occurred almost annually in one or more of the world's tropical or subtropical seas. Bleaching is episodic, with the most severe events typically accompanying coupled ocean–atmosphere phenomena, such as the El Niño-Southern Oscillation (ENSO), which result in sustained regional elevations of ocean temperature. Using this extended dataset (25+ years), we review the short- and long-term ecological impacts of coral bleaching on reef ecosystems, and quantitatively synthesize recovery data worldwide. Bleaching episodes have resulted in catastrophic loss of coral cover in some locations, and have changed coral community structure in many others, with a potentially critical influence on the maintenance of biodiversity in the marine tropics. Bleaching has also set the stage for other declines in reef health, such as increases in coral diseases, the breakdown of reef framework by bioeroders, and the loss of critical habitat for associated reef fishes and other biota. Secondary ecological effects, such as the concentration of predators on remnant surviving coral populations, have also accelerated the pace of decline in some areas. Although bleaching severity and recovery have been variable across all spatial scales, some reefs have experienced relatively rapid recovery from severe bleaching impacts. There has been a significant overall recovery of coral cover in the Indian Ocean, where many reefs were devastated by a single large bleaching event in 1998. In contrast, coral cover on western Atlantic reefs has generally continued to decline in response to multiple smaller bleaching events and a diverse set of chronic secondary stressors. No clear trends are apparent in the eastern Pacific, the central-southern-western Pacific or the Arabian Gulf, where some reefs are recovering and others are not. The majority of survivors and new recruits on regenerating and recovering coral reefs have originated from broadcast spawning taxa with a potential for asexual growth, relatively long distance dispersal, successful settlement, rapid growth and a capacity for framework construction. Whether or not affected reefs can continue to function as before will depend on: (1) how much coral cover is lost, and which species are locally extirpated; (2) the ability of remnant and recovering coral communities to adapt or acclimatize to higher temperatures and other climatic factors such as reductions in aragonite saturation state; (3) the changing balance between reef accumulation and bioerosion; and (4) our ability to maintain ecosystem resilience by restoring healthy levels of herbivory, macroalgal cover, and coral recruitment. Bleaching disturbances are likely to become a chronic stress in many reef areas in the coming decades, and coral communities, if they cannot recover quickly enough, are likely to be reduced to their most hardy or adaptable constituents. Some degraded reefs may already be approaching this ecological asymptote, although to date there have not been any global extinctions of individual coral species as a result of bleaching events. Since human populations inhabiting tropical coastal areas derive great value from coral reefs, the degradation of these ecosystems as a result of coral bleaching and its associated impacts is of considerable societal, as well as biological concern. Coral reef conservation strategies now recognize climate change as a principal threat, and are engaged in efforts to allocate conservation activity according to geographic-, taxonomic-, and habitat-specific priorities to maximize coral reef survival. Efforts to forecast and monitor bleaching, involving both remote sensed observations and coupled ocean–atmosphere climate models, are also underway. In addition to these efforts, attempts to minimize and mitigate bleaching impacts on reefs are immediately required. If significant reductions in greenhouse gas emissions can be achieved within the next two to three decades, maximizing coral survivorship during this time may be critical to ensuring healthy reefs can recover in the long term.  相似文献   
37.
黑海参(Holothuria atra)是热带珊瑚礁大型底栖动物群落中的代表种类之一,其摄食活动对珊瑚礁生境底质有机物的循环再利用具有重要作用。本文研究了三亚蜈支洲岛典型热带珊瑚礁海域野生黑海参的沉积物选择特征及其触手和消化系统结构功能的适应性。结果表明,黑海参摄取的沉积物颗粒相对较粗,其中粒径0.25mm部分占到了总重量的96.67%。触手上3—6个乳突形成乳突簇[直径(283.00±40.94)μm],适宜摄取大颗粒沉积物。黑海参胃内含物有机物含量显著高于环境沉积物,证实其对有机物含量的选择性;粒径0.25mm部分有机物含量占摄入总有机物量的75%,与环境沉积物中相同粒度的有机物总量占比接近(76%),表明黑海参选择的沉积物粒径范围有效保证了其高效摄入有机质。黑海参前肠的脂肪酶、淀粉酶、纤维素酶、胰蛋白酶活性最高,同时绝大部分的有机质(98.33%)在前肠被吸收。组织学定量分析表明,黑海参前肠黏膜层厚度最大,占总厚度的56.33%,这与其高效吸收有机质的功能相适应;后肠的肠壁总厚度和黏膜下层、肌层厚度均显著高于前肠和中肠,表明其具有相对更好的弹性和收缩能力,适合于大颗粒有机质的高效输送与排出。研究结果证实,黑海参摄食器官和消化道独特的结构与功能保证了其在珊瑚砂粗颗粒生境中高效摄取有机物。  相似文献   
38.
本文利用电子探针对南海西沙群岛琛航岛珊瑚礁底部火山碎屑岩中的单斜辉石矿物的化学特征进行了研究。结果表明,该单斜辉石属于富钙透辉石,部分有正环带结构,从核部到边部Ca、Fe、Ti的含量逐渐增加,是岩浆正常结晶顺序的反映,说明该区域的岩浆演化是向着富Ca、Fe、Ti方向发展的。主量元素数据显示,单斜辉石具有低Si高Al的特征(SiO2=41.40%~48.44%,Al2O3=5.54%~10.20%),且AlⅣ含量较高,说明母岩浆为不饱和碱性岩浆系列;此外,单斜辉石Ca含量偏高,Ca/(Ca+Mg+Fe)值在46.1%~51.4%之间,推测是母岩浆的高Ca含量导致了大量高钙辉石的产出。结合西沙海域的地震和构造资料,推测琛航岛珊瑚礁的基底是玄武质火山碎屑岩组成的平顶状海山,系岩浆穿过断裂发育的岩石圈层在西沙群岛的海底喷发,随后火山碎屑物质经过堆积、固结作用而形成;该火山碎屑岩的原岩为板内碱性玄武岩。  相似文献   
39.
Bioeroding sponges belong to the most dominant bioeroders, significantly contributing to the erosion of coral reefs. Some species are tolerant or even benefit from environmental conditions such as ocean warming, acidification, and eutrophication. In consequence, increases in sponge bioerosion have been observed on some coral reefs over the last decades. The Abrolhos Bank is the largest coral reef system in the South Atlantic. It has been affected by sedimentation, eutrophication, overfishing, and climate change, mainly affecting coastal reefs, and at lesser intensity outer ones as well. This study aimed to describe spatial and temporal patterns in bioeroding sponge distribution in carbonate substrates in the Abrolhos Bank. Photo‐quadrats were used to compare bioeroding sponge abundance between two shallow reefs: a coastal, Pedra de Leste (PL), and an outer reef, Parcel dos Abrolhos (PAB). Each individual was delimitated over the substrate by determining the sponge surface through a line connecting the outermost papillae. The study was conducted over 6 years in 2008–2009 and 2013–2016. Four species of bioeroding sponges were identified: Cliona carteri Ridley, 1881, C. delitrix Pang, 1973, C. cf. schmidtii Ridley, 1881, and Siphonodictyon coralliphagum Rützler, 1971. The distribution and abundance of species varied between the inner and outer reefs and across the years, and displayed certain selectivity for the calcareous substrates recorded. Crustose coralline algae (CCA) were the main substrate excavated by the most abundant bioeroding species, C. carteri, and represented 70% of the substrate types occupied by this sponge (CCA, coral overgrown by CCA and plain coral). The highest abundance of bioeroding sponges observed in photo‐quadrats was 21.3 individuals/m2 at the outer reefs (PAB) in 2014. The abundances or areal extents of bioeroding sponges were up to 10 times greater on the outer reefs than on the coastal ones, where sedimentation is higher and more strongly influenced by siliciclastic material. Moreover, a higher herbivorous fish biomass has been reported on outer reefs which could also influence the higher abundance of bioeroding sponges in outer reefs. During the study period of 6 years, an increase in bioeroding sponge abundance was observed at the outer reefs (PAB), with the sea surface temperature increase. As CCA have an important role in reefal cementation and carbonate production in the Abrolhos reefs, a bioerosion impact might be expected, in particular, on the outer reefs.  相似文献   
40.
There were two severe coral bleaching events at Ko Khang Khao, the inner Gulf of Thailand, occurred during the prolonged period of the elevated sea surface temperature (SST) in 2010 and low salinity as well as turbidity due to heavy flooding in 2011. The bleaching index (BI) and mortality index (MI) are calculated to compare the susceptibilities of coral species in the two bleaching events. The BI and MI vary significantly among the study sites and bleaching events. The most susceptible corals during both bleaching events are Acropora millepora, Pocillopora damicornis and Pavona decussate, while the most resistant species were Galaxea fascicularis, Fungia fungites, Pavona frondifera, Oulastrea crispate, and Symphyllia recta. The corals Favia favus, Goniopora columna, Platygyra pini, Symphyllia agaricia were relatively more tolerant to high SST but they are relatively more susceptible to low salinity. Coral bleaching is a phenomenon that the dissociation stress of the symbiotic relationship between zooxanthellae and their cnidarian host results in the reduction in photosynthetic pigment concentration. Among stressors, both prolonged exposure of high SST and low salinity, above and below their thresholds, respectively. The long-term resilience of coral communities at Ko Khang Khao and other coral communities close to the mouth of large rivers may depend on the frequency and duration of the exposure on the elevated SST due to atmospheric heating and low salinity due to river flooding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号