TPost-orogenic intrusive complexes from the Sulu belt of eastern China consist of pyroxene monzonites and dioritic porphyrites. We report new U–Pb zircon ages, geochemical data, and Sr–Nd–Pb isotopic data for these rocks. Laser ablation-inductively coupled plasma-mass spectrometry U–Pb zircon analyses yielded a weighted mean 206Pb/238U age of 127.4 ± 1.2 Ma for dioritic porphyrites, consistent with crystallization ages (126 Ma) of the associated pyroxene monzonites. The intrusive complexes are characterized by enrichment in light rare earth elements and large ion lithophile elements (i.e. Rb, Ba, Pb, and Th) and depletion in heavy rare earth elements and high field strength elements (i.e. Nb, Ta, P, and Ti), high (87Sr/86Sr)i ranging from 0.7083 to 0.7093, low ?Nd(t) values from ?14.6 to ? 19.2, 206Pb/204Pb = 16.65–17.18, 207Pb/204Pb = 15.33–15.54, and 208Pb/204Pb = 36.83–38.29. Results suggest that these intermediate plutons were derived from different sources. The primary magma-derived pyroxene monzonites resulted from partial melting of enriched mantle hybridized by melts of foundered lower crustal eclogitic materials before magma generation. In contrast, the parental magma of the dioritic porphyrites was derived from partial melting of mafic lower crust beneath the Wulian region induced by the underplating of basaltic magmas. The intrusive complexes may have been generated by subsequent fractionation of clinopyroxene, potassium feldspar, plagioclase, biotite, hornblende, ilmenite, and rutile. Neither was affected by crustal contamination. Combined with previous studies, these findings provide evidence that a Neoproterozoic batholith lies beneath the Wulian region. 相似文献
Abstract The segmentation of flood seasons has both theoretical and practical importance in hydrological sciences and water resources management. The probability change-point analysis technique is applied to segmenting a defined flood season into a number of sub-seasons. Two alternative sampling methods, annual maximum and peaks-over-threshold, are used to construct the new flow series. The series is assumed to follow the binomial distribution and is analysed with the probability change-point analysis technique. A Monte Carlo experiment is designed to evaluate the performance of proposed flood season segmentation models. It is shown that the change-point based models for flood season segmentation can rationally partition a flood season into appropriate sub-seasons. China's new Three Gorges Reservoir, located on the upper Yangtze River, was selected as a case study since a hydrological station with observed flow data from 1882 to 2003 is located 40 km downstream of the dam. The flood season of the reservoir can be reasonably divided into three sub-seasons: the pre-flood season (1 June–2 July); the main flood season (3 July–10 September); and the post-flood season (11–30 September). The results of flood season segmentation and the characteristics of flood events are reasonable for this region. Citation Liu, P., Guo, S., Xiong, L. & Chen, L. (2010) Flood season segmentation based on the probability change-point analysis technique. Hydrol. Sci. J.55(4), 540–554. 相似文献
The spatial and temporal patterns of the temperature extremes defined by 5th and 95th percentiles based on daily maximum/minimum
temperature dataset were analyzed using Mann–Kendall test and linear regression method. The research results indicate that:
(1) the seasonal minimum temperature is in stronger increasing trend than the seasonal maximum temperature; (2) in comparison
with the changes of the maximum temperature, more stations display significantly increasing trends of minimum temperature
in frequency and intensity; (3) comparatively, more stations have significantly decreasing trends in the intra-seasonal extreme
temperature anomaly in summer and winter than in spring and autumn. The areal mean minimum temperature is in stronger increasing
trend than areal mean maximum temperature; (4) the warming process in the Far-West (FW) China is characterized mainly by significantly
increasing minimum temperature. The research will be helpful for local human mitigation to alterations in water resource and
ecological environment in FW China due to changes of temperature extremes, as the ecologically fragile region of China. 相似文献