全文获取类型
收费全文 | 5841篇 |
免费 | 1586篇 |
国内免费 | 236篇 |
专业分类
测绘学 | 29篇 |
大气科学 | 38篇 |
地球物理 | 3706篇 |
地质学 | 2226篇 |
海洋学 | 313篇 |
天文学 | 904篇 |
综合类 | 12篇 |
自然地理 | 435篇 |
出版年
2024年 | 5篇 |
2023年 | 1篇 |
2022年 | 3篇 |
2021年 | 63篇 |
2020年 | 79篇 |
2019年 | 265篇 |
2018年 | 466篇 |
2017年 | 478篇 |
2016年 | 519篇 |
2015年 | 458篇 |
2014年 | 476篇 |
2013年 | 786篇 |
2012年 | 466篇 |
2011年 | 420篇 |
2010年 | 357篇 |
2009年 | 295篇 |
2008年 | 413篇 |
2007年 | 284篇 |
2006年 | 278篇 |
2005年 | 280篇 |
2004年 | 232篇 |
2003年 | 239篇 |
2002年 | 203篇 |
2001年 | 183篇 |
2000年 | 195篇 |
1999年 | 64篇 |
1998年 | 47篇 |
1997年 | 17篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1994年 | 14篇 |
1993年 | 11篇 |
1992年 | 13篇 |
1991年 | 13篇 |
1990年 | 11篇 |
1989年 | 3篇 |
1988年 | 2篇 |
1987年 | 9篇 |
1986年 | 2篇 |
1985年 | 2篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1980年 | 1篇 |
排序方式: 共有7663条查询结果,搜索用时 15 毫秒
131.
Effects of Watershed Land Use and Lake Morphometry on the Trophic State of Chinese Lakes: Implications for Eutrophication Control 总被引:1,自引:0,他引:1
Water quality in lakes is influenced by a large number of watershed and lake characteristics. In this study, we examined the relative effects of watershed land use and lake morphology on the trophic state of 19 lakes in the Yunnan plateau and lower Yangtze floodplain, the two most eutrophic regions in China. Trophic state parameters consisted of total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll‐a, Secchi depth, and trophic state index, while lake morphometric variables included area, maximum depth, mean depth, water residence time (WRT), volume, and length to width ratio. Percentages of forest, grassland, cropland, unused land, built‐up land, and water body in each lake's watershed were extracted from a land use map interpreted from Landsat TM images. A t‐test indicated that lower Yangtze floodplain lakes were shallower and had higher percentages of cropland and built‐up land in watersheds than Yunnan plateau lakes. Pearson's correlation analysis indicated that both watershed land use and lake morphometric variables were significantly related to most of the trophic state parameters. However, stepwise regression analyses demonstrated that the trophic state of the lower Yangtze floodplain lakes was mainly controlled by the percentages of cropland and built‐up land in watersheds, while that of Yunnan plateau lakes was mostly determined by the lake depth and WRT. These results suggest that the relative effects of watershed land use and lake morphology on lake trophic state are dependent on the lake's location. This study can provide some useful information in watershed land use management for controlling eutrophication in Chinese lakes. 相似文献
132.
Jun‐Zhi Wang Xiao‐Wei Jiang Zhi‐Yuan Zhang Li Wan Xu‐Sheng Wang Hailong Li 《水文研究》2017,31(22):4006-4018
Although it has been increasingly acknowledged that groundwater flow pattern is complicated in the three‐dimensional (3‐D) domain, two‐dimensional (2‐D) water table‐induced flow models are still widely used to delineate basin‐scale groundwater circulation. However, the validity of 2‐D cross‐sectional flow field induced by water table has been seldom examined. Here, we derive the analytical solution of 3‐D water table‐induced hydraulic head in a Tóthian basin and then examine the validity of 2‐D cross‐sectional models by comparing the flow fields of selected cross sections calculated by the 2‐D cross‐sectional model with those by the 3‐D model, which represents the “true” cases. For cross sections in the recharge or discharge area of the 3‐D basin, even if head difference is not significant, the 2‐D cross‐sectional models result in flow patterns absolutely different from the true ones. For the cross section following the principal direction of groundwater flow, although 2‐D cross‐sectional models would overestimate the penetrating depth of local flow systems and underestimate the recharge/discharge flux, the flow pattern from the cross‐sectional model is similar to the true one and could be close enough to the true one by adjusting the decay exponent and anisotropy ratio of permeability. Consequently, to determine whether a 2‐D cross‐sectional model is applicable, a comparison of hydraulic head difference between 2‐D and 3‐D solutions is not enough. Instead, the similarity of flow pattern should be considered to determine whether a cross‐sectional model is applicable. This study improves understanding of groundwater flow induced by more natural water table undulations in the 3‐D domain and the limitations of 2‐D models accounting for cross‐sectional water table undulation only. 相似文献
133.
We review results of Suzaku observations of the intracluster medium of clusters of galaxies whose O, Mg, Si, S and Fe abundances have been measured with good accuracy due to the good energy resolution and low background. Metal massto‐light ratios were derived and we will discuss the origin of the metals. We also review the results of the search for bulk motion and hard X‐ray emission. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
134.
The probability that an earthquake occurs when a train is running over a bridge in earthquake‐prone regions is much higher than before, for high‐speed railway lines are rapidly developed to connect major cities worldwide. This paper presents a finite element method‐based framework for dynamic analysis of coupled bridge–train systems under non‐uniform seismic ground motion, in which rail–wheel interactions and possible separations between wheels and rails are taken into consideration. The governing equations of motion of the coupled bridge–train system are established in an absolute coordinate system. Without considering the decomposition of seismic responses into pseudo‐static and inertia‐dynamic components, the equations of motion of the coupled system are formed in terms of displacement seismic ground motions. The mode superposition method is applied to the bridge structure to make the problem manageable while the Newmark‐β method with an iterative computation scheme is used to find the best solution for the problem concerned. Eight high‐speed trains running over a multi‐span steel truss‐arch bridge subject to earthquakes are taken as a case study. The results from the case study demonstrate that the spatial variation of seismic ground motion affects dynamic responses of the bridge–train system. The ignorance of pseudo‐static component when using acceleration seismic ground motions as input may underestimate seismic responses of the bridge–train system. The probability of separation between wheels and rails becomes higher with increasing train speed. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
135.
Jianwen Pan Y. T. Feng Feng Jin Yanjie Xu Qicheng Sun Chuhan Zhang D. R. J. Owen 《国际地质力学数值与分析法杂志》2013,37(16):2690-2705
A meso‐scale particle model is presented to simulate the expansion of concrete subjected to alkali‐aggregate reaction (AAR) and to analyze the AAR‐induced degradation of the mechanical properties. It is the first attempt to evaluate the deterioration mechanism due to AAR using the discrete‐element method. A three‐phase meso‐scale model for concrete composed of aggregates, mortar and the interface is established with the combination of a pre‐processing approach and the particle flow code, PFC2D. A homogeneous aggregate expansion approach is applied to model the AAR expansion. Uniaxial compression tests are conducted for the AAR‐affected concrete to examine the effects on the mechanical properties. Two specimens with different aggregate sizes are analyzed to consider the effects of aggregate size on AAR. The results show that the meso‐scale particle model is valid to predict the expansion and the internal micro‐cracking patterns caused by AAR. The two different specimens exhibit similar behavior. The Young's modulus and compressive strength are significantly reduced with the increase of AAR expansion. The shape of the stress–strain curves obtained from the compression tests clearly reflects the influence of internal micro‐cracks: an increased nonlinearity before the peak loading and a more gradual softening for more severely affected specimens. Similar macroscopic failure patterns of the specimens under compression are observed in terms of diagonal macroscopic cracks splitting the specimen into several triangular pieces, whereas localized micro‐cracks forming in slightly affected specimens are different from branching and diffusing cracks in severely affected ones, demonstrating different failure mechanisms. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
136.
A. Moya J.C. Surez S. Martín‐Ruiz P.J. Amado C. Rodríguez‐Lpez A. Grigahcne M.A. Dupret E. Rodríguez R. Garrido 《Astronomische Nachrichten》2008,329(5):541-544
Mode identification is one of the first and main problems we encounter in trying to develop the complete potential of asteroseismology. In the particular case of g‐mode pulsators, this is still an unsolved problem, from both the observational and theoretical points of view. Nevertheless, in recent years, some observational and theoretical efforts have been made to find a solution. In this work we use the latest theoretical and computational tools to understand asymptotic g‐mode pulsators: 1) the Frequency Ratio Method, and 2) Time Dependent Convection. With these tools, a self‐consistent procedure for mode identification and modelling of these g‐mode pulsators can be constructed. This procedure is illustrated using observational information available for the γ Doradus star 9Aurigae. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
137.
To further develop prediction of the range of morphological adjustments associated with sediment pulses in bar‐pool channels, we analyze channel bed topographic data collected prior to and following the removal of two dams in Oregon: Marmot Dam on the Sandy River and Brownsville Dam on the Calapooia River. We hypothesize that, in gravel‐bed, bar‐pool channels, the response of bed relief to sand and gravel sediment pulses is a function of initial relief and pulse magnitude. Modest increases in sediment supply to initially low‐relief, sediment‐poor cross‐sections will increase bed relief and variance of bed relief via bar deposition. Modest increases in sediment supply to initially high‐relief cross‐sections, characteristic of alternate bar morphology, will result in decreased bed relief and variance of relief via deposition in bar‐adjacent pools. These hypothesized adjustments are measured in terms of bed relief, which we define as the difference in elevation between the pool‐bottom and bar‐top. We evaluate how relief varies with sediment thickness, where both relief and mean sediment thickness at a cross‐section are normalized by the 90th percentile of observed relief values within a reach prior to a sediment pulse. Field measurements generally supported the stated hypotheses, demonstrating how introduction of a sediment pulse to low‐relief reaches can increase mean and variance of relief, while introduction to high‐relief reaches can decrease the mean and variance of bed relief, at least temporarily. In general, at both sites, the degree of impact increased with the thickness of sediment delivered to the cross‐section. Results thus suggest that the analysis is a useful step for understanding the morphological effects of sediment pulses introduced to gravel‐bed, bar‐pool channels. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
138.
This paper presents two test procedures for evaluating the bond stress–slip and the slip–radial dilation relationships when the prestressing force is transmitted by releasing the steel (wire or strand) in precast prestressed elements. The bond stress–slip relationship is obtained with short length specimens, to guarantee uniform bond stress, for three depths of the wire indentation (shallow, medium and deep). An analytical model for bond stress–slip relationship is proposed and compared with the experimental results. The model is also compared with the experimental results of other researchers. Since numerical models for studying bond‐splitting problems in prestressed concrete require experimental data about dilatancy angle (radial dilation), a test procedure is proposed to evaluate these parameters. The obtained values of the radial dilation are compared with the prior estimated by numerical modelling and good agreement is reached. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
139.
Transient seepage analysis in zoned anisotropic soils based on the scaled boundary finite‐element method 下载免费PDF全文
The scaled boundary finite‐element method, a semi‐analytical computational scheme primarily developed for dynamic stiffness of unbounded domains, is applied to the analysis of unsteady seepage flow problems. This method is based on the finite‐element technology and gains the advantages of the boundary element method as well. Only boundary of the domain is discretized, no fundamental solution is required and singularity problems can be modeled rigorously. Anisotropic and non‐homogeneous materials satisfying similarity are modeled with no additional efforts. In this study, firstly, formulation of the method for the transient seepage flow problems is derived followed by its solution procedures. The accuracy, simplicity and applicability of the method are demonstrated via four numerical examples of transient seepage flow – three of them are available in the literature. Homogenous, non‐homogenous, isotropic and anisotropic material properties are considered to show the versatility of the technique. Excellent agreement with the finite‐element method is observed. The method out‐performs the finite‐element method in modeling singularity points. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
140.
In‐plane and out‐of‐plane behavior of confined masonry walls for various toothing and openings details and prediction of their strength and stiffness 下载免费PDF全文
Eight half‐scale brick masonry walls were tested to study two important aspects of confined masonry (CM) walls related to its seismic behavior under in‐plane and out‐of‐plane loads. Four solid wall specimens tested to investigate the role of type of interface between the masonry and tie‐columns, such as toothing varying from none to every course. The other four specimens with openings were tested to study the effectiveness of various strengthening options around opening to mitigate their negative influence. In the set of four walls, one wall was infilled frame while the other three were CM walls of different configurations. The experimental results were further used to determine the accuracy of various existing models in predicting the in‐plane response quantities of CM walls. Confined masonry walls maintained structural integrity even when severely damaged and performed much better than infill frames. No significant effect of toothing details was noticed although toothing at every brick course was preferred for better post‐peak response. For perforated walls, provision of vertical elements along with continuous horizontal bands around openings was more effective in improving the overall response. Several empirical and semi‐empirical equations are available to estimate the lateral strength and stiffness of CM walls, but those including the contribution of longitudinal reinforcement in tie‐columns provided better predictions. The available equations along with reduction factors proposed for infills could not provide good estimates of strength and stiffness for perforated CM walls. However, recently proposed relations correlating strength/stiffness with the degree of confinement provided reasonable predictions for all wall specimens. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献