全文获取类型
收费全文 | 4240篇 |
免费 | 449篇 |
国内免费 | 729篇 |
专业分类
测绘学 | 1469篇 |
大气科学 | 427篇 |
地球物理 | 422篇 |
地质学 | 1564篇 |
海洋学 | 391篇 |
天文学 | 100篇 |
综合类 | 413篇 |
自然地理 | 632篇 |
出版年
2024年 | 30篇 |
2023年 | 78篇 |
2022年 | 157篇 |
2021年 | 195篇 |
2020年 | 227篇 |
2019年 | 234篇 |
2018年 | 152篇 |
2017年 | 223篇 |
2016年 | 220篇 |
2015年 | 212篇 |
2014年 | 209篇 |
2013年 | 301篇 |
2012年 | 239篇 |
2011年 | 255篇 |
2010年 | 188篇 |
2009年 | 238篇 |
2008年 | 234篇 |
2007年 | 276篇 |
2006年 | 244篇 |
2005年 | 179篇 |
2004年 | 174篇 |
2003年 | 165篇 |
2002年 | 141篇 |
2001年 | 108篇 |
2000年 | 105篇 |
1999年 | 90篇 |
1998年 | 82篇 |
1997年 | 85篇 |
1996年 | 62篇 |
1995年 | 47篇 |
1994年 | 55篇 |
1993年 | 49篇 |
1992年 | 36篇 |
1991年 | 18篇 |
1990年 | 22篇 |
1989年 | 21篇 |
1988年 | 14篇 |
1987年 | 9篇 |
1986年 | 9篇 |
1985年 | 6篇 |
1984年 | 6篇 |
1982年 | 1篇 |
1980年 | 2篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1976年 | 4篇 |
1975年 | 1篇 |
1973年 | 7篇 |
1972年 | 1篇 |
1971年 | 3篇 |
排序方式: 共有5418条查询结果,搜索用时 0 毫秒
91.
多时相Radarsat数据在广东肇庆地区稻田分类中的应用 总被引:11,自引:2,他引:11
将1996年获取的4个时相的Radarsat图像用于广东肇庆地区的稻田分类试验,结果表明,多时相Radarsat数据对水稻类型的识别精度较高,而且稻田的轮作规律容易推测出来。本文系统地介绍了这一试验研究的最新进展,探讨了神经网络分类方法在SAR图像处理中的应用潜力和Radarsat数据在中国南方水稻监测中的最佳时相选择和有效分辨率问题。 相似文献
92.
通过对GF-2卫星影像正射校正及波段模拟配准误差试验,分析GF-2卫星正射校正方法的选择以及不同配准误差下对GF-2卫星影像自动分类结果的影响;最后介绍GF-2遥感影像在森林资源监测应用中的初步测试。研究结果表明:正射校正时,当校正精度要求控制在RMS2时,控制点数量选择范围在85~95间较为合理,且控制点数在90个时,RMS值最小;经有理函数模型与卫片模型比较后,卫片模型校正精度较高;以目视判读为主时,实践中建议使用三次卷积重采样法输出结果最好;波段模拟配准误差试验中,配准误差与各地类面积变化间存在显著的线性关系;对于森林面积监测时,配准误差应小于0.3个像元。此研究可为新型国产卫星数据在森林资源监测中的应用提供参考。 相似文献
93.
Feilin Lai 《地理信息系统科学与遥感》2020,57(6):830-844
ABSTRACT Information on urban settlements is crucial for sustainability planning and management. While remote sensing has been used to derive such information, its applicability can be compromised due to the complexity in the urban environment. In this study, we developed a remote sensing method to map land cover types in a large Latin-American city, which is well known for its mushrooming unplanned and informal settlements. After carefully considering the landscape complexity there, we designed a data fusion method combining multispectral imagery and non-spectral data for urban and land mapping. Specifically, we acquired a cloud-free Landsat-8 image and two non-spectral datasets, i.e., digital elevation models and road networks. Then, we implemented a set of experiments with different inputs to evaluate their merits in thematic mapping through a supervised protocol. We found that the map generated with the multispectral data alone had an overall accuracy of 73.3% but combining multispectral imagery and non-spectral data yielded a land cover map with 90.7% overall accuracy. Interestingly, the thermal infrared information helped substantially improve both the overall and categorical accuracies, particularly for the two urban classes. The two types of non-spectral data were critical in resolving several spectrally confused categories, thus considerably increasing the mapping accuracy. However, the panchromatic band with higher spatial resolution and its derived textural measurement only generated a marginal accuracy improvement. The novelties of our work are with the successful separation between the two major types of urban settlements in a complex environment using a carefully designed data fusion approach and the insight into the relative merits of the thermal infrared information and non-spectral data in helping resolve the issue of class ambiguity. These findings should be valuable in deriving accurate urban settlement information which can further advance the research on socio-ecological dynamics and urban sustainability. 相似文献
94.
Nataliia Kussul Andrii Kolotii Sergii Skakun Olena Rakoid Leonid Shumilo 《International Journal of Digital Earth》2020,13(2):309-321
ABSTRACTFor evaluating the progresses towards achieving the Sustainable Development Goals (SDGs), a global indicator framework was developed by the UN Inter-Agency and Expert Group on Sustainable Development Goals Indicators. In this paper, we propose an improved methodology and a set of workflows for calculating SDGs indicators. The main improvements consist of using moderate and high spatial resolution satellite data and state-of-the-art deep learning methodology for land cover classification and for assessing land productivity. Within the European Network for Observing our Changing Planet (ERA-PLANET), three SDGs indicators are calculated. In this research, harmonized Landsat and Sentinel-2 data are analyzed and used for land productivity analysis and yield assessment, as well as Landsat 8, Sentinel-2 and Sentinel-1 time series are utilized for crop mapping. We calculate for the whole territory of Ukraine SDG indicators: 15.1.1 – ‘Forest area as proportion of total land area’; 15.3.1 – ‘Proportion of land that is degraded over total land area’; and 2.4.1 – ‘Proportion of agricultural area under productive and sustainable agriculture’. Workflows for calculating these indicators were implemented in a Virtual Laboratory Platform. We conclude that newly available high-resolution remote sensing products can significantly improve our capacity to assess several SDGs indicators through dedicated workflows. 相似文献
95.
Accurate spatio-temporal classification of crops is of prime importance for in-season crop monitoring. Synthetic Aperture Radar (SAR) data provides diverse physical information about crop morphology. In the present work, we propose a day-wise and a time-series approach for crop classification using full-polarimetric SAR data. In this context, the 4 × 4 real Kennaugh matrix representation of a full-polarimetric SAR data is utilized, which can provide valuable information about various morphological and dielectric attributes of a scatterer. The elements of the Kennaugh matrix are used as the parameters for the classification of crop types using the random forest and the extreme gradient boosting classifiers.The time-series approach uses data patterns throughout the whole growth period, while the day-wise approach analyzes the PolSAR data from each acquisition into a single data stack for training and validation. The main advantage of this approach is the possibility of generating an intermediate crop map, whenever a SAR acquisition is available for any particular day. Besides, the day-wise approach has the least climatic influence as compared to the time series approach. However, as time-series data retains the crop growth signature in the entire growth cycle, the classification accuracy is usually higher than the day-wise data.Within the Joint Experiment for Crop Assessment and Monitoring (JECAM) initiative, in situ measurements collected over the Canadian and Indian test sites and C-band full-polarimetric RADARSAT-2 data are used for the training and validation of the classifiers. Besides, the sensitivity of the Kennaugh matrix elements to crop morphology is apparent in this study. The overall classification accuracies of 87.75% and 80.41% are achieved for the time-series data over the Indian and Canadian test sites, respectively. However, for the day-wise data, a ∼6% decrease in the overall accuracy is observed for both the classifiers. 相似文献
96.
以正确提取城区Li DAR点云中建筑物为目标,综合利用不同类别目标点云的回波特征以及地形信息,提出了一种基于区域多次回波密度分析的Li DAR点云建筑物提取方法。首先,将点云构建不规则三角网(triangulated irregular network,TIN),获取封闭的等高线;然后,利用等高线间的拓扑关系得到等高线族区域;最后,统计每一区域的多次回波点云密度信息,通过建筑物和树木区域多次回波点云在区域密度上的巨大差异来识别建筑物点云和树木点云。研究结果表明:该方法既充分利用了建筑物表面与植被间多次回波特性的差异,又不否定建筑物边缘同样存在多次回波的现象;通过封闭的等高线自适应地检测出地物目标的轮廓,弥补了传统Li DAR建筑物提取方法的不足;该方法能够较其他方法更准确地提取建筑物。 相似文献
97.
98.
机载多光谱LiDAR的随机森林地物分类 总被引:1,自引:0,他引:1
机载多光谱LiDAR技术利用激光进行探测和测距,不仅可以快速获取地面物体的三维坐标,还可以获得多个波段的地物光谱信息,可广泛用于地形测绘、土地覆盖分类、环境建模、森林资源调查等。本文提出了多光谱LiDAR的随机森林地物分类方法。该方法通过对LiDAR强度数据和高程数据提取分类特征,完成多光谱LiDAR的随机森林地物分类;并分析随机森林的特征贡献度特性,采用后向特征选择方法实现分类特征选择。通过对加拿大Optech Titan多光谱LiDAR数据的试验表明:随机森林方法可以获得较好的地物分类精度,而且可以适当地去除部分冗余和相关的特征,从而有效提高分类精度。 相似文献
99.
北斗三号(BDS-3)基本系统于2018年底开始提供全球服务.通过处理37个全球GNSS服务组织(IGS)多模实验跟踪网(MGEX)观测站90天北斗数据,评估了北斗二号(BDS-2)和BDS-3在全球范围内的可见卫星数、几何精度衰减因子(GDOP)和单频伪距单点定位精度,分析了BDS-2/BDS-3组合对BDS-2、BDS-3单系统空间几何构型、伪距单点定位(SPP)精度的改善程度.结果表明,BDS-3的空间几何构型较BDS-2有明显的提升,定位精度在东方向、北方向和高程方向分别为1.490、2.610、5.238 m(RMS),相较于BDS-2分别提高了58%、1%、24%.BDS-2/BDS-3组合在东方向、北方向和高程方向分别为1.45、2.36、4.90 m(RMS),较BDS-2与BDS-3单系统分别提高了59%、11%、29%,以及3%、10%、6%.并且BDS-2/BDS-3组合明显削弱了BDS-2定位精度与地理经度相关的边缘效应. 相似文献
100.
土壤遥感分类识别推理决策器的设计 总被引:5,自引:0,他引:5
介绍了干旱区土壤遥感分类识别推理决策器的设计原理与实现方法。在用TM遥感图像对土壤类型进行非监督分类的基础上,建立了正向推理与逆向推理相结合的推理机制,对土壤类型进行分类识别决策。用知识表示的产生式规则与框架式规则相结合的数据结构表示土壤学专家的土壤分类识别知识。用像结构模式建立了土壤分类识别的规则,构造了土壤分类判决树,并用典型像例模式进行了各类型土壤判据文件的组织。用该方法对新疆天山北麓阜康试验区的土壤分类识别进行了试验研究。结果表明,该方法分类精度可靠,为干旱区土壤分类识别开辟了一条新的途径。 相似文献