首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   632篇
  免费   129篇
  国内免费   31篇
测绘学   10篇
大气科学   10篇
地球物理   310篇
地质学   285篇
海洋学   54篇
天文学   1篇
综合类   19篇
自然地理   103篇
  2024年   2篇
  2023年   8篇
  2022年   11篇
  2021年   30篇
  2020年   32篇
  2019年   33篇
  2018年   24篇
  2017年   24篇
  2016年   28篇
  2015年   38篇
  2014年   32篇
  2013年   59篇
  2012年   43篇
  2011年   32篇
  2010年   25篇
  2009年   35篇
  2008年   37篇
  2007年   25篇
  2006年   31篇
  2005年   31篇
  2004年   20篇
  2003年   27篇
  2002年   17篇
  2001年   21篇
  2000年   16篇
  1999年   6篇
  1998年   13篇
  1997年   22篇
  1996年   6篇
  1995年   7篇
  1994年   11篇
  1993年   7篇
  1992年   7篇
  1991年   6篇
  1990年   7篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1976年   1篇
排序方式: 共有792条查询结果,搜索用时 421 毫秒
281.
Although studies of sediment transport in steep and coarse-grained channels have been more numerous in recent years, the dynamics of sediment transport in step–pool river systems remain poorly understood. This paper investigates displacements of individual clasts through Spruce Creek (Québec, Canada), a classic step–pool channel, and the effects of the channel morphology on the path length of the clasts. Passive integrated transponder tags (PIT) were used to track the displacement of 196 individual particles over a range of discharges including the bankfull stage. Clasts were tracked after five sequences of flood events. The results showed that the distance distributions match a two-parameter Gamma model. Equal mobility transport occurs for the particle size investigated during each sequence of flood events. Mean travel distance of the clasts can be estimated from excess stream power, and the mobility of the clasts is more than an order of magnitude less than the model reported in riffle–pool channels. The dominant morphological length scale of the bed also controls the path length of the clasts. These results confirm some preliminary observations on sediment transport in step–pool channels.  相似文献   
282.
Variation and taxonomic changes in the family Retropinnidae (Salmonoidea)   总被引:1,自引:1,他引:0  
The family Retropinnidae contains one monotypic genus, Stokellia, in New Zealand, and nine nominal species of Retropinna: five in New Zealand, three in Australia, and one on Chatham Island. Four Chatham Island populations contain much of the recorded range of variation for the family for head length in standard length ratios, numbers of dorsal and anal rays, and numbers of scale rows. These characters are analysed for 29 populations incorporating five nominal species from New Zealand and Chatham Island. When interrelated these characters are shown to be linked (loosely) and high values are typical of coastal populations. When related to latitude their values increase to the south. The reverse trend is found with increase in altitude. Decrease in salinity depresses the values. Area of the lake habitat has little effect.

Observations suggest that size of fish and numbers of teeth vary predictably. Thus all observed variation is related to environmental conditions. The four nominal lake species are submerged in Retropinna retropinna (Richardson), the type species of the genus, which is considered to be highly adaptable rather than highly variable. R. osmeroides Hector is recognised as distinct from R. retropinna on one character and on sympatric distribution. Records of Australian and Tasmanian species suggest that R. victoriae Stokell differs fundamentally from all other species but that R. semoni Weber and jR. tasmanica McCulloch do not differ greatly from R. retropinna Similar environmentally correlated variation is suggested to relate some diadromous species of Galaxias and their lacustrine isolates.  相似文献   
283.
Food and feeding of small fish in the Rakaia River,New Zealand   总被引:1,自引:1,他引:0  
Benthic macroinvertebrates and fish species were collected at monthly intervals during a 12‐month period, from 3 areas of the lower Rakaia River. The composition and abundance of the benthos and stomach contents of the fish were analysed for seasonal trends, food niche breadth and overlap between pairs of fish species, and overlap between the benthos and the diet of each fish species. The diets of bluegilled bully (Gobiomorphus hubbsi), upland bully (G. breviceps), juvenile longfinned eel (Anguilla dieffenbachii), Galaxias brevipinnis, G. paucispondylus, and juvenile brown trout (Salmo trutta) were similar to the proportions of prey species in the benthos. Deleatidium and chironomid larvae dominated the benthos in all seasons and formed the majority of food items in the diet of these species. Food niche overlap between these species was high, indicating potential competition, but preferred habitat and feeding habit differences plus low fish population density and abundance of main prey items probably eliminate the occurrence of any serious competition. The diet of the other fish species differed from this pattern. The common bully (Gobiomorphus cotidianus) ate proportionally more chironomid larvae and fish eggs than occurred in the benthos; torrentfish (Cheimarrichthys fosteri) ate proportionally more chironomid larvae than occurred in the benthos; and quinnat salmon (Oncorhynchus tshawytscha) depended largely upon prey species of terrestial origin, such as adult Deleatidium and dipterans.  相似文献   
284.
Underwater census and single‐pass electrofishing were compared for estimating relative abundance of juvenile brown trout in the Kakanui River, South Island, NZ. Mean sampling efficiency was lower, and the variability of sampling efficiency was much greater, for underwater census (0+ trout: x = 0.38, s = 0.368; 1+ trout: x = 0.62, s = 0.822) than for single‐pass electrofishing (0+ trout: x = 0.61, s = 0.143; 1+ trout: x = 0.74, s = 0.171). Sampling efficiency of both methods was dependent on temperature. Electrofishing became less efficient at higher temperatures whereas underwater census became less efficient at colder temperatures. The low, and highly variable, sampling efficiency for underwater census of 0+ brown trout was related to substrate hiding behaviour which is dependent on temperature. A ratio method for comparing relative abundance estimates is presented. Minimum significance values for the ratio (R) were derived for 0+ trout using temperature adjusted sampling efficiencies. To be statistically significant, relative abundance estimates made by underwater census had to differ by a factor of 6–7 times, whereas those made by single‐pass electrofishing had to differ only by about 2 times, depending on the number of fish counted. By confining comparisons of relative abundance estimates made by underwater census to the summer period, differences of about 3.5–4 times could be detected statistically. It was concluded that single‐pass electrofishing is superior to underwater census for estimating the relative abundance of juvenile brown trout in shallow (< 1 m) river habitat, especially when temperature varies widely as with season and time of day.  相似文献   
285.
Fish abundance data from selected electric‐fishing records in the New Zealand Freshwater Fish Database (NZFFD) were used to identify riverine fish communities and to examine their relationship to environmental variables included in the NZFFD. Only 21 fish species, 18 native species, and three introduced salmonids, were present at 1% or more of the sites. We defined 12 fish communities characterised by a dominant species: two salmonid communities, two non‐diadromous native communities, and eight communities characterised by diadromous native species. Altitude and distance inland were the two most significant variables, reflecting differences between communities dominated by diadromous and non‐diadromous species. The next most important variables were related to the geographic location of the site. Other environmental variables that were highly correlated with the fish community assignments were stream width and percentage of native forest or farming land use in the catchment upstream of the site. Of the local habitat variables, percentage of cascade habitat and percentage of sand substrate were the most important discriminators between communities. Despite having only a limited set of broad‐scale environmental variables, we achieved 47% success in the prediction of community membership using multiple discriminant analysis, with another 21% of sites being near misses. A greater knowledge of barriers to migration of diadromous species and fine‐scale variables describing in‐stream habitat would probably increase the predictive ability of the model, although collection of such data is time consuming and therefore impractical on a national scale.  相似文献   
286.
近40 a江河源区潜在蒸散量变化特征及影响因子分析   总被引:5,自引:2,他引:3  
王素萍 《中国沙漠》2009,29(5):960-966
 利用1966—2005年江河源区8个气象站的逐月气候资料,采用Penman-Monteith公式,对源区近40 a潜在蒸散量的时空分布特征和变化趋势进行了分析,并对造成潜在蒸散量变化的主要气候影响因子进行了探讨。结果表明:①江河源区年潜在蒸散量平均为977 mm,高值区位于西北部,低值区位于东南部;潜在蒸散量在空间上可以划分为源区北部、长江源区南部和黄河源区南部3个不同的区域;②近40 a来,江河源区年及四季潜在蒸散量均呈减少趋势,且长江源区南部比其他区域下降显著,夏季比其他季节下降显著,年潜在蒸散量的变化主要以21 a左右和7 a左右的周期振荡为主,且在1985年左右发生均值突变;③源区年和四季潜在蒸散量与风速、净辐射和饱和差关系密切,40 a来风速的明显减小是导致源区潜在蒸散量减小的主要原因。  相似文献   
287.
In recent years airborne laser scanning (ALS) evolved into a state‐of‐the‐art technology for topographic data acquisition. We present a novel, automatic method for water surface classification and delineation by combining the geometrical and signal intensity information provided by ALS. The reflection characteristics of water surfaces in the near‐infrared wavelength (1064 nm) of the ALS system along with the surface roughness information provide the basis for the differentiation between water and land areas. Water areas are characterized by a high number of laser shot dropouts and predominant low backscatter energy. In a preprocessing step, the recorded intensities are corrected for spherical loss and atmospheric attenuation, and the locations of laser shot dropouts are modeled. A seeded region growing segmentation, applied to the point cloud and the modeled dropouts, is used to detect potential water regions. Object‐based classification of the resulting segments determines the final separation of water and non‐water points. The water‐land‐boundary is defined by the central contour line of the transition zone between water and land points. We demonstrate that the proposed workflow succeeds for a regulated river (Inn, Austria) with smooth water surface as well as for a pro‐glacial braided river (Hintereisfernerbach, Austria). A multi‐temporal analysis over five years of the pro‐glacial river channel emphasizes the applicability of the developed method for different ALS systems and acquisition settings (e.g. point density). The validation, based on real time kinematic (RTK) global positioning system (GPS) field survey and a terrestrial orthophoto, indicate point cloud classification accuracy above 97% with 0·45 m planimetric accuracy (root mean square error) of the water–land boundary. This article shows the capability of ALS data for water surface mapping with a high degree of automation and accuracy. This provides valuable datasets for a number of applications in geomorphology, hydrology and hydraulics, such as monitoring of braided rivers, flood modeling and mapping. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
288.
A natural experiment in landscape evolution is a case study of landform development in which only one element varies significantly, and for which the driving forces, initial conditions, and/or boundary conditions are well constrained. Natural experiments provide a means of testing landscape evolution theory on the large space and time scales to which that theory applies. Natural experiments can involve either steady or transient conditions. Cases with steady conditions allow one to test predictions about the relationships among topography, erosion rates, and various attributes related to climate and material properties. Transient cases are valuable for distinguishing between models whose predictions might be similar, and therefore indistinguishable, under steady conditions. Essential ingredients of a natural experiment include minimal variation in all but one factor, good constraints on timing and/or rates, well‐characterized processes, and high quality topographic data. Other useful ingredients include information about intermediate topographic states (such as a former valley profile revealed by strath terraces), and knowledge of the time history of erosion rates. In order to deepen our understanding of the physics and chemistry of long‐term landscape evolution, there is a pressing need to identify natural experiments and develop the necessary databases to take advantage of them. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
289.
In‐channel sand mining by dredge removes large quantities of bed sediment and alters channel morphodynamic processes. While the reach‐scale impacts of dredging are well documented, the effects of the dredged borrow pit on the local flow and sediment transport are poorly understood. These local effects are important because they control the post‐dredge evolution of the borrow pit, setting the pit lifespan and affecting reach‐scale channel morphology. This study documents the observed morphological evolution of a large (1·46 million m3) borrow pit mined on a lateral sandbar in the lower Mississippi River using a time‐series of multibeam bathymetric surveys. During the 2·5 year time‐series, 53% of the initial pit volume infilled with sediment, decreasing pit depth by an average of 0·88 m yr?1. To explore the controls of the observed infilling, a morphodynamic model (Delft3D) was used to simulate flow and sediment transport within the affected river reach. The model indicated that infilling rates were primarily related to the riverine sediment supply and pit geometry. The pit depth and length influenced the predicted magnitude of the pit bed shear stress relative to its pre‐dredged value, i.e. the bed‐stress reduction ratio (R*), a metric that was correlated with the magnitude and spatial distribution of infilling. A one‐dimensional reduced‐complexity model was derived using predicted sediment supply and R* to simulate patterns of pit infilling. This simplified model of borrow‐pit evolution was able to closely approximate the amount and patterns of sediment deposition during the study period. Additional model experiments indicate that, for a borrow pit of a set volume, creating deep, longitudinally‐shorter borrow pits significantly increased infilling rates relative to elongated pits. Study results provide insight into the resilience of alluvial river channels after a disturbance and the sustainability of sand mining as a sediment source for coastal restoration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
290.
Braiding has been widely studied in humid‐temperate climates though rarely in arid environments. Morpho‐texture of braided streams refers to the morphological‐textural organization in a braid‐cell (stream section including bars, anabranches and chutes) that may strongly relate to different processes and hydrological regimes. The objective of this study is to compare the morpho‐texture of braided streams governed by diverse flow recessions in different climates. Measurements were conducted in the wadis Ze'elim and Rahaf, southeast hyper‐arid Israel, in the Mediterranean Barranca‐de‐los‐Pinos, central Spain and in humid‐temperate braided systems, the La‐Bléone River, Haute‐Provence, France and in the Saisera and Cimoliana torrents, northeast Italy. Terrestrial laser scanning was used to produce point clouds and high resolution digital elevation models of the braid‐cells. Wet braid‐cells in humid‐temperate environments were surveyed by a Total Station. Roughness and the upper tail of grain size distributions were derived from the scanned point clouds or from Wolman sampling. We found that anabranches are commonly finer‐grained than the bars in dryland systems and in semi‐arid sandy braided systems, contrary to the humid‐temperate braided systems. In both climates, chutes are similar or coarser‐grained than the bars which they dissect, in accordance with their steeper gradients due to the considerable bar‐anabranch relief. The Saisera's morpho‐texture is similar to that of the dryland braided channels, despite the very humid‐temperate environment in which it is located, due to its short‐lived, ephemeral type hydrograph. Hydrograph shape, specifically the duration of flow recession, typical of a climate but not confined to it, determines the morpho‐texture of braided streams and the textural differentiation between a depositional bar and the adjacent anabranches. The morpho‐texture of chutes and bars results also from local erosional processes affected by local topography, i.e. ungraded longitudinal profiles, and is not solely determined by flow recession. This new morpho‐textural model enables identifying primary depositional and erosional braiding processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号