首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   12篇
  国内免费   20篇
测绘学   4篇
大气科学   1篇
地球物理   30篇
地质学   15篇
海洋学   98篇
综合类   1篇
自然地理   5篇
  2022年   3篇
  2021年   1篇
  2020年   5篇
  2019年   6篇
  2018年   6篇
  2016年   8篇
  2015年   4篇
  2014年   7篇
  2013年   7篇
  2012年   6篇
  2011年   6篇
  2010年   7篇
  2009年   13篇
  2008年   17篇
  2007年   10篇
  2006年   8篇
  2005年   11篇
  2004年   12篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
排序方式: 共有154条查询结果,搜索用时 31 毫秒
91.
Data from satellite altimeters and from a 13-month deployment of in situ instruments are used to determine an empirical relationship between sea-level anomaly difference (SLA) across the Kuroshio in the East China Sea (ECS-Kuroshio) and net transport near 28°N. Applying this relationship to the altimeter data, we obtain a 12-year time series of ECS-Kuroshio transport crossing the C-line (KT). The resulting mean transport is 18.7 ± 0.2 Sv with 1.8 Sv standard deviation. This KT is compared with a similarly-determined time series of net Ryukyu Current transport crossing the O-line near 26°N southeast of Okinawa (RT). Their mean sum (24 Sv) is less than the mean predicted Sverdrup transport. These KT and RT mean-flow estimates form a consistent pattern with historical estimates of other mean flows in the East China Sea/Philippine Basin region. While mean KT is larger than mean RT by a factor of 3.5, the amplitude of the KT annual cycle is only half that of RT. At the 95% confidence level the transports are coherent at periods of about 2 years and 100–200 days, with RT leading KT by about 60 days in each case. At the annual period, the transports are coherent at the 90% confidence level with KT leading RT by 4–5 months. While the bulk of the Kuroshio enters the ECS through the channel between Taiwan and Yonaguni-jima, analysis of satellite altimetry maps, together with the transport time series, indicates that the effect of mesoscale eddies is transmitted to the ECS via the Kerama Gap southwest of Okinawa. Once the effect of these eddies is felt by the ECS-Kuroshio at 28°N, it is advected rapidly to the Tokara Strait.  相似文献   
92.
DGPS走航测深验潮技术中的潮位信息提取方法   总被引:2,自引:0,他引:2  
吴未华  李炎  邵浩  葛勇 《海洋学研究》2008,26(3):98-106
提出了一种提取观测海域潮位信息的新方法--DGPS走航测深验潮技术,即在走航ADCP重复测量断面潮周期流场观测的同时获取潮位信息,并实现水下地形的潮位改正.该方法通过重复测量点瞬时水深数据选取、潮位差数据计算、叠加拟合和迭代逼近等预处理与算法,可在潮差约1.6 m、地形起伏高达10~20 m的台湾浅滩沙波区,获取均方根误差小于0.1 m的潮位观测结果.  相似文献   
93.
首先概述了坐底式海洋环境监测系统的发展历程、结构组成、工作原理和系统功能等。设计开发了一套浅海坐底式海洋环境监测系统,并在北黄海海域进行了长时间应用。对其结构组成特点、原理功能和实际应用情况等进行了详细阐述,并结合一段时间的监测数据,说明其可为海洋科学研究、海水养殖与海洋工程等提供基础数据。对坐底式海洋环境监测系统的布放与回收方法进行介绍,针对近海经常出现无释放器或释放器失灵的坐底式海洋环境监测系统,且潜水员或作业型水下机器人(ROV)不方便下潜系缆的情况,设计了一种实操性强的打捞回收方法。总结归纳了所设计的浅海坐底式海洋环境监测系统特点及回收方法,可为相关应用与研究提供参考借鉴。  相似文献   
94.
李琦  陈朝晖 《海洋与湖沼》2022,53(2):305-319
利用深海潜标所搭载的声学多普勒流速剖面仪(acoustic doppler current profiler,ADCP)得到的后向散射强度Sv,研究了黑潮-亲潮混合区浮游动物的垂向分布、其昼夜垂直迁移(diel vertical migration;DVM)的基本特征、多时间尺度变化及对反气旋式中尺度暖涡的响应.结果表...  相似文献   
95.
This paper illustrates how the acoustic Doppler current profiler (ADCP) and single-beam echo-sounder (SBES) recordings can be used for the calibration of existing software to assist in generalizing the morphodynamic processes in large rivers at key sites such as bifi.trcations and confluences. Calibration of the MIKE21C numerical model by the Danish Hydraulic Institute at the 25-km-long reach of Lower Paran~ near Rosario (Argentina) is presented. This reach includes two downstream confluences and two bifurcations. The model simulates a 2-D depth-averaged flow velocity and the related sediment fluxes to predict the bifurcation morphodynamics that affects the Paranh waterway. To investigate the river channel bathymetry, roughness, flow discharge allocation at bifurcations, suspended sediment concentration and grain size distributions, several instruments were used. These instruments included two ADCPs by Teledyne RDI working at frequencies of 600 and 1,200 kHz, a Sontek ADCP working at a frequency of 1,000 kHz and a SBES. The method to assess suspended sediment concentration and grain size distributions has been previously described. This paper focuses primarily on investigating dune morphology (by means of SBES depth measurements) and friction velocity (by means of ADCP profiling) to determine the river channel bed-roughness. The 2-D model results agree with observed values of bed-roughness, flow velocity and suspended sediment concentration distributions at the investigated sections, known data of water slope and total load of bed sediment are in good agreement with model results.  相似文献   
96.
This study assesses hydrodynamic and morphodynamic model sensitivity and functionality in a curved channel. The sensitivity of a depth‐averaged model to user‐defined parameters (grain size, roughness, transverse bed slope effect, transport relations and secondary flow) is tested. According to the sensitivity analysis, grain size, transverse bed slope effect and sediment transport relations are critical to simulated meander bend morphodynamics. The parametrization of grain size has the most remarkable effect: field‐based grain size parametrization is necessary in a successful morphodynamic reconstruction of a meander bend. The roughness parametrization method affects the distribution of flow velocities and therefore also morphodynamics. The combined effect of various parameters needs further research. Two‐dimensional (2D) and three‐dimensional (3D) reconstructions of a natural meander bend during a flood event are assessed against field measurements of acoustic Doppler current profiler and multi‐temporal mobile laser scanning data. The depth‐averaged velocities are simulated satisfactorily (differences from acoustic Doppler current profiler velocities 5–14%) in both 2D and 3D simulations, but the advantage of the 3D hydrodynamic model is unquestionable because of its ability to model vertical and near‐bed flows. The measured and modelled near‐bed flow, however, differed notably from each other's, the reason of which was left open for future research. It was challenging to model flow direction beyond the apex. The 3D flow features, which also affected the distribution of the bed shear stress, seem not to have much effect on the predicted morphodynamics: the 2D and 3D morphodynamic reconstructions over the point bar resembled each other closely. Although common features between the modelled and measured morphological changes were also found, some specific changes that occurred were not evident in the simulation results. Our results show that short‐term, sub‐bend scale morphodynamic processes of a natural meander bend are challenging to model, which implies that they are affected by factors that have been neglected in the simulations. The modelling of short‐term morphodynamics in natural curved channel is a challenge that requires further study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
97.
The distribution and circulation of water masses in the region between 6°W and 3°E and between the Antarctic continental shelf and 60°S are analyzed using hydrographic and shipboard acoustic Doppler current profiler (ADCP) data taken during austral summer 2005/2006 and austral winter 2006. In both seasons two gateways are apparent where Warm Deep Water (WDW) and other water masses enter the Weddell Gyre through the Lazarev Sea: (a) a probably topographically trapped westward, then southwestward circulation around the northwestern edge of Maud Rise with maximum velocities of about 20 cm s−1 and (b) the Antarctic Coastal Current (AntCC), which is confined to the Antarctic continental shelf slope and is associated with maximum velocities of about 25 cm s−1.Along two meridional sections that run close to the top of Maud Rise along 3°E, geostrophic velocity shears were calculated from CTD measurements and referenced to velocity profiles recorded by an ADCP in the upper 300 m. The mean accuracy of the absolute geostrophic velocity is estimated at ±2 cm s−1. The net baroclinic transport across the 3°E section amounts to 20 and 17 Sv westward for the summer and winter season, respectively. The majority of the baroclinic transport, which accounts for ∼60% of the total baroclinic transport during both surveys, occurs north of Maud Rise between 65° and 60°S.However, the comparison between geostrophic estimates and direct velocity measurements shows that the circulation within the study area has a strong barotropic component, so that calculations based on the dynamic method underestimate the transport considerably. Estimation of the net absolute volume transports across 3°E suggests a westward flow of 23.9±19.9 Sv in austral summer and 93.6±20.1 Sv in austral winter. Part of this large seasonal transport variation can be explained by differences in the gyre-scale forcing through wind stress curl.  相似文献   
98.
Relative ‘echo intensity’ data (dI) from a bottom-mounted four-beam 300 kHz acoustic Doppler current profiler (ADCP) are used to infer propagation of vigorous processes above a continental slope. The 3- to 60-m horizontal beam spread and the 2-Hz sampling allow the distinction of different arrival times t i , i = 1,..., 4, at different distances in the acoustic beams from sharp changes in dI-content associated with frontal non-linear and turbulent bores or ‘waves’. The changes in dI are partially due to variations in amounts of resuspended material carried by the near-bottom turbulence and partially due to the fast variations in density stratification (‘stratified turbulence’), as inferred from 1-Hz sampled thermistor string data above the ADCP. Such bores are observed to pass the mooring up to 80 m above the bottom, having typical propagation speeds c = 0.15–0.5 m s−1, as determined from dI(t i ). Particle speeds in the immediate environment of a bore amount to |u|env=c ± 0.05 m s−1, the equality being a necessary condition for kinematic instability, whilst the maximum particle speeds amount |u|max = 1.2–2c. The dI-determined directions of up-, down- and alongslope processes are all to within ±10° of the ADCP’s beam-spread averaged current (particle velocity) data.  相似文献   
99.
作者采用浊度计和声学多普勒流速剖面仪(ADCP)在近海区域连续、定点观测的应用中,利用浊度与悬沙浓度之间良好的线性关系,对潮汐半月周期内的浊度和ADCP后向散射声强数据进行相关性分析,讨论了小、中、大潮期间利用ADCP后向散射声强反演悬沙浓度的可靠性,反演过程中综合考虑了声学近场非球面扩散和本底噪声的影响。结果表明,在实验海域中,小潮情况下,各水层内悬浮泥沙成分较为稳定,ADCP后向散射声强与浊度变化相关性较高,达到0.91;而在大潮情况下,ADCP后向散射声强与浊度变化的相关性降低,悬沙浓度及成分容易在海流的影响下发生变化。  相似文献   
100.
High-resolution current velocity and suspended sediment concentration (SSC) data were collected by using an Acoustic Doppler Current Profiler (ADCP) at two anchor stations and a cross-section in the South Channel of the Changjiang River mouth during meso and neap tides on Nov. 16, 2003. In addition, tidal cycle (13-hour) observation at two stations was carried out with traditional methods during the spring tide. Results indicated that resuspension occurred not only at the flood and ebb maximum, but also in the early phase of ebb in the meso and neap tide. When tidal current transited from high to ebb phase, current speed accelerated. Subsequently, fine-grained sediment with low critical threshold was resuspended and increased concentration. The river mouth area remained in siltation in the meso and neap tidal phase during the observation season, with calculated resuspension flux in the order of magnitude of 10−4–10−7 kg·m−2/s. Suspended sediment transport in the South Channel was dominated by freshwater discharge, but the Storks drift, vertical circulation and vertical shear effect due to tidal oscillation also played an important role in resuspension and associated sediment transport. In contrast, resuspension sediment flux in the spring tide was larger than that in meso and neap tide, especially at the ebb maximum and flood maximum. The present study revealed that intensive resuspension corresponded well with the larger current velocity during winter. In addition, the ‘tidal pumping’ effect and tidal gravity circulation were also vital for forming the turbidity maximum in the Changjiang River estuary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号