首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2246篇
  免费   231篇
  国内免费   315篇
测绘学   19篇
大气科学   184篇
地球物理   636篇
地质学   733篇
海洋学   227篇
天文学   680篇
综合类   37篇
自然地理   276篇
  2024年   15篇
  2023年   19篇
  2022年   30篇
  2021年   56篇
  2020年   72篇
  2019年   76篇
  2018年   55篇
  2017年   62篇
  2016年   52篇
  2015年   65篇
  2014年   60篇
  2013年   117篇
  2012年   71篇
  2011年   154篇
  2010年   143篇
  2009年   174篇
  2008年   204篇
  2007年   162篇
  2006年   126篇
  2005年   150篇
  2004年   125篇
  2003年   102篇
  2002年   87篇
  2001年   75篇
  2000年   88篇
  1999年   82篇
  1998年   72篇
  1997年   46篇
  1996年   38篇
  1995年   40篇
  1994年   22篇
  1993年   20篇
  1992年   21篇
  1991年   12篇
  1990年   11篇
  1989年   18篇
  1988年   15篇
  1987年   7篇
  1986年   4篇
  1985年   8篇
  1984年   7篇
  1983年   6篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1973年   1篇
排序方式: 共有2792条查询结果,搜索用时 15 毫秒
151.
152.
Caleb I. Fassett 《Icarus》2007,189(1):118-135
Ceraunius Tholus, a Hesperian-aged volcano in the Tharsis region, is characterized by small radial valleys on its flanks, and several larger valleys originating near its summit caldera. All of these large valleys drain from near the lowest present portion of the caldera rim and down the flanks of the volcano. The largest valley debauches into Rahe Crater (an oblique impact crater), forming a depositional fan. Recent study of climate change on Mars suggests that many low-latitude regions (especially large volcanic edifices) were periodically the sites of snow accumulation, likely triggered by variations in spin orbital parameters. We apply a conductive heat flow model to Ceraunius Tholus that suggests that following magmatic intrusion, sufficient heating would be available to cause basal melting of any accumulated summit snowpack and produce sufficient meltwater to cause the radial valleys. The geometry of the volcano summit caldera suggests that meltwater would also accumulate in a volumetrically significant caldera lake. Analysis of the morphology and volumes of the largest valley, as well as depositional features at its base, suggest that fluvial erosion due to drainage of this summit caldera lake formed the large valleys, in a manner analogous to how valleys were formed catastrophically from a lake in Aniakchak caldera in Alaska. Moreover, the event which carved the largest valley on Ceraunius Tholus appears to have led to the formation of a temporary lake within Rahe Crater, at its base. The more abundant, small valleys on the flanks are interpreted to form by radial drainage of melted ice or snow from the outside of the caldera rim. Comparison of Ceraunius Tholus with the volcano-capping Icelandic ice sheet Myrdalsjokull provides insight into the detailed mechanisms of summit heating, ice-cap accumulation and melting, and meltwater drainage. These observations further underline the importance of a combination of circumstances (i.e., climate change to produce summit snowpack and an active period of magmatism to produce melting) to form the valley systems on some martian volcanoes and not on others.  相似文献   
153.
154.
In order to investigate the formation of martian gullies and the stability of fluids on Mars, we examined about 120 gully images. Twelve HiRISE images contained a sufficient number of Transverse Aeolian Ridges (TARs) associated with the gullies to make the following measurements: overall gully length, length of the alcove, channel and apron, and we also measured the frequency of nearby TARs. Six of the 12 images examined showed a statistically significant negative correlation between overall gully length (alcove, channel and apron length) and TAR frequency. Previous experimental work from our group has shown that at temperatures below ∼200 K, evaporation rate increases by about an order of magnitude as wind speed increases from 0 to ∼15 m/s. Thus the negative correlations we observe between gully length and dune frequency can be explained by formation at temperatures below ∼200 K where wind speed/evaporation is a factor governing gully length. In these cases evaporation of the fluid carving the gully was a constraint on their dimensions. Cases where there is no correlation between gully length and TAR frequency, can be explained by formation at temperatures >200 K. The temperatures are consistent with Global Circulation Model and Thermal Emission Spectrometer (TES) data for these latitudes. The temperatures suggested by these trends are consistent with the fluid responsible for gully formation being a strong brine, such as Fe2(SO4)3 which has a eutectic temperature of ∼200 K. We also find that formation timescales for gullies are 105-106 years.  相似文献   
155.
We have conducted high-pressure experiments in the H2O-CH4 and H2O-CH4-NH3 systems in order to investigate the stability of methane clathrate hydrates, with an optical sapphire-anvil cell coupled to a Raman spectrometer for sample characterization. The results obtained confirm that three factors determine the stability of methane clathrate hydrates: (1) the bulk methane content of the samples; (2) the presence of additional gas compounds such as nitrogen; (3) the concentration of ammonia in the aqueous solution. We show that ammonia has a strong effect on the stability of methane clathrates. For example, a 10 wt.% NH3 solution decreases the dissociation temperature of methane clathrates by 14-25 K at pressures above 5 MPa. Then, we apply these new results to Titan’s conditions. Dissociation of methane clathrate hydrates and subsequent outgassing can only occur in Titan’s icy crust, in presence of locally large amounts of ammonia and in a warm context. We propose a model of cryomagma chamber within the crust that provides the required conditions for methane outgassing: emplacement of an ice plume triggers the melting (if solid) or heating (if liquid) of large ammonia-water pockets trapped at shallow depth, and the generated cryomagmas dissociate surrounding methane clathrate hydrates. We show that this model may allow for the outgassing of significant amounts of methane, which would be sufficient to maintain the presence of methane in Titan’s atmosphere for several tens of thousands of years after a large cryovolcanic event.  相似文献   
156.
Mary C. Bourke 《Icarus》2010,205(1):183-197
Barchan dune asymmetry refers to the extension of one barchan limb downwind. It is a common dune form on Earth and also occurs on Mars and Titan. A new classification of barchan limbs is presented where three types of limb morphology are identified: linear, kinked and beaded. These, along with other dune-scale morphological signatures, are used to identify three of the causes of barchan asymmetry on Mars: bi-directional winds, dune collision and the influence of inclined topography.The potential for specific dune asymmetric morphologies to indicate aspects of the formative wind regime on planetary surfaces is shown. For example, the placement of dune limbs can indicate the general direction and relative strength of formative oblique winds; an extreme barchan limb length may indicate a long duration oblique wind; a kinked limb may be evidence of the passage of a storm; beaded limbs may represent surface-wave instabilities caused by an increase in wind energy parallel to the dune. A preliminary application of these signatures finds evidence for bi-modal winds on Mars. However, these and other morphological signatures of wind direction and relative strength should be applied to planetary landforms with caution as more than one process (e.g., bi-modal winds and collision) may be operating together or sequentially on the dunefield. In addition, analysis should be undertaken at the dunefield scale and not on individual dunes. Finally, morphological data should be acquired from similar-scale dunes within a dunefield.In addition to bi-modal wind regimes on Mars, the frequent parallel alignment of the extended barchan limb to the dune suggests that dune collision is also an important cause of asymmetry on Mars. Some of the more complex dunefield patterns result from a combination of dune collision, limb extension and merging with downwind dunes.Dune asymmetric form does not inhibit dune migration in the Namib Desert or on Mars. Data from the Namib suggest that dune migration rates are similar for symmetric and asymmetric dunes. Further modeling and field studies are needed to refine our understanding of the potential range of limb and dune morphologies that can result from specific asymmetry causes.  相似文献   
157.
A variety of Late Amazonian landforms on Mars have been attributed to the dynamics of ice-related processes. Evidence for large-scale, mid-latitude glacial episodes existing within the last 100 million to 1 billion years on Mars has been presented from analyses of lobate debris aprons (LDA) and lineated valley fill (LVF) in the northern and southern mid-latitudes. We test the glacial hypothesis for LDA and LVF along the dichotomy boundary in the northern mid-latitudes by examining the morphological characteristics of LDA and LVF surrounding two large plateaus, proximal massifs, and the dichotomy boundary escarpment north of Ismeniae Fossae (centered at 45.3°N and 39.2°E). Lineations and flow directions within LDA and LVF were mapped using images from the Context (CTX) camera, the Thermal Emission Imaging Spectrometer (THEMIS), and the High Resolution Stereo Camera (HRSC). Flow directions were then compared to topographic contours derived from the Mars Orbiter Laser Altimeter (MOLA) to determine the down-gradient components of LDA and LVF flow. Observations indicate that flow patterns emerge from numerous alcoves within the plateau walls, are integrated over distances of up to tens of kilometers, and have down-gradient flow directions. Smaller lobes confined within alcoves and superposed on the main LDA and LVF represent a later, less extensive glacial phase. Crater size-frequency distributions of LDA and LVF suggest a minimum (youngest) age of 100 Ma. The presence of ring-mold crater morphologies is suggestive that LDA and LVF are formed of near-surface ice-rich bodies. From these observations, we interpret LDA and LVF within our study region to result from formerly active debris-covered glacial flow, consistent with similar observations in the northern mid-latitudes of Mars. Glacial flow was likely initiated from the accumulation and compaction of snow and ice on plateaus and in alcoves within the plateau walls as volatiles were mobilized to the mid-latitudes during higher obliquity excursions. Together with similar analyses elsewhere along the dichotomy boundary, these observations suggest that multiple glacial episodes occurred in the Late Amazonian and that LDA and LVF represent significant reservoirs of non-polar ice sequestered below a surface lag for hundreds of millions of years.  相似文献   
158.
Solid CO2 is observed to be an abundant interstellar ice component towards both quiescent clouds and active star-forming regions. Our recent models of gas–grain chemistry, appropriate for quiescent regions, severely underproduce solid CO2 at the single assumed gas density and temperature. In this paper, we investigate the sensitivity of our model results to changes in these parameters. In addition, we examine how the nature of the grain surface affects the results and also consider the role of the key surface reaction between O and CO. We conclude that the observed high abundance of solid CO2 can be reproduced at reasonable temperatures and densities by models with diffusive surface chemistry, provided that the diffusion of heavy species such as O occurs efficiently.  相似文献   
159.
Molecular R -matrix calculations are performed to give rotational excitation rates for electron collisions with linear molecular ions. Results are presented for CO+, HCO+, NO+ and H2+ up to electron temperatures of 10 000 K. De-excitation rates and critical electron densities are also given. It is shown that the widely used Coulomb–Born approximation is valid for Δ j =1 transitions when the molecular ion has a dipole greater than about 2D, but otherwise is not reliable for studying electron-impact rotational excitation. In particular, transitions with Δ j >1 are found to have appreciable rates and are found to be entirely dominated by short-range effects.  相似文献   
160.
This investigation is an analysis of the influence of landform instability on the distribution of land-use dynamics in a hydrographical basin, located in the Mexican Volcanic Belt mountain range (central Mexico), currently affected by substantial changes in land use and deforestation. A landform map was produced, in addition to seven attribute maps - altimetry, drainage density, slope, relief energy, potential erosion, geology and tectonics - which were considered as factors for determining landform instability through Multi-criteria Evaluation Analysis. Likewise, the direction and rhythm of land-use dynamics were analyzed in four dates - between 1976 and 2000 - and cross tabulations were made between them, in order to analyze the trends and processes of land-use dynamics. Afterwards, the databases obtained were cross tabulated with the landform variables to derive areas, percentages and correlation indices. In the study area, high-instability landforms are associated with most ancient volcanic and sedimentary landforms, where high altitude, drainage density, slope and potential to develop gravitational and fluvial processes are the major factors favouring a land-use pattern, dominated by the conservation of extensive forest land, abandonment of human land use and regeneration of disturbed areas. In contrast, low-instability landforms correspond to alluvial plains and lava hills covered by pyroclasts, where low potential erosion to develop fluvial processes, added to water and soil availability and accessibility, have favoured a land-use pattern dominated by the expansion of agroforestry plantations and human settlements, showing a marked trend towards either intensification or permanence of the current land use and with little abandonment and regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号