首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   479篇
  免费   92篇
  国内免费   110篇
测绘学   171篇
大气科学   142篇
地球物理   67篇
地质学   122篇
海洋学   60篇
天文学   4篇
综合类   71篇
自然地理   44篇
  2024年   3篇
  2023年   2篇
  2022年   16篇
  2021年   36篇
  2020年   28篇
  2019年   51篇
  2018年   17篇
  2017年   45篇
  2016年   50篇
  2015年   41篇
  2014年   43篇
  2013年   40篇
  2012年   28篇
  2011年   23篇
  2010年   34篇
  2009年   32篇
  2008年   32篇
  2007年   28篇
  2006年   16篇
  2005年   14篇
  2004年   23篇
  2003年   13篇
  2002年   9篇
  2001年   6篇
  2000年   6篇
  1999年   9篇
  1998年   4篇
  1997年   3篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1985年   2篇
  1984年   1篇
排序方式: 共有681条查询结果,搜索用时 15 毫秒
11.
Ti separation was achieved by ion-exchange chromatography using Bio-Rad AG 1-X8 anion-exchange and DGA resins. For high-Fe/Ti and high-Mg/Ti igneous samples, a three-column procedure was required, whereas a two-column procedure was used for low-Fe/Ti and low-Mg/Ti igneous samples. The Ti isotopes were analysed by MC-ICP-MS, and instrumental mass bias was corrected using a 47Ti-49Ti double-spike technique. The 47Ti-49Ti double-spike and SRM 3162a were calibrated using SRM 979-Cr, certificated value 53Cr/52Crtrue = 0.11339. Isobaric interference was evaluated by analysing Alfa-Ti doped with Na, Mg, Ca, and Mo, and results indicate that high concentrations of Na and Mg have no significant effect on Ti isotope analyses; however, Ca and Mo interferences lead to erroneous δ49/47Ti values when Ca/Ti and Mo/Ti ratios exceed 0.01 and 0.1, respectively. Titanium isotopic compositions were determined for 12 igneous reference materials, BCR-2, BHVO-2, GBW07105, AGV-1, AGV-2, W-2, GBW07123, GBW07126, GBW07127, GBW07101, JP-1, and DTS-2b. Samples yield δ49/47Ti (‰) of ?0.035 ± 0.022, ?0.038 ± 0.031, 0.031 ± 0.022, 0.059 ± 0.038, 0.044 ± 0.037, 0.000 ± 0.015, 0.154 ± 0.044, ?0.044 ± 0.018, 0.010 ± 0.022, 0.064 ± 0.043, 0.169 ± 0.034, and ?0.047 ± 0.025 (relative to OL-Ti, ±2SD), respectively; of which isotopic compositions of DTS-2b, JP-1, GBW07101, GBW07105, GBW07123, GBW07126, and GBW07127 are reported for the first time. Standard Alfa-Ti was analysed repeatedly over a ten-month period, indicating a reproducibility of ±0.047 (2SD) for δ49/47Ti, similar to the precisions obtained for geochemical reference materials.  相似文献   
12.

利用安徽省81站逐日降水量资料、NCEP 500 hPa再分析资料、ECMWF(以下简称EC)降水和500 hPa高度预报,基于暴雨中心和天气类型的客观判定,分类统计2012—2018年23个强降水过程降水中心的预报偏差。结果表明在西路强冷空气和东路冷空气天气类型下,当EC预报降水中心位于115°—120°E 584 dagpm线以北时,降水中心预报往往偏北,依据两者的纬度差和降水中心预报偏差建立了基于天气分类的主雨带位置订正方法;同时依据23个强降水过程最大降水区域降水量预报的日平均偏差,建立了暴雨的强度订正方法。将偏差订正方法应用于2020年安徽省梅汛期预报,结果发现无论位置还是强度订正都能使暴雨预报TS评分明显提高。同时进行位置和强度订正后,暴雨TS评分提高更加明显,尤其是对2020年两次最强降水过程订正效果显著。

  相似文献   
13.

利用2015年6月1日—7月31日三个全球数值预报业务中心(CMA、ECMWF和NCEP)的24 h降水集合预报资料和我国东南地区降水观测资料,采用贝叶斯模型平均方法(A方案)和基于A方案的统计降尺度模型二次订正方法(B方案)对上述三个中心和多模式超级集合降水预报进行订正,并对比两种方案的订正效果;然后,选取2015年8月1—31日降水预报进行独立样本检验,分析订正前后的降水预报效果。结果表明:以第50百分位的降水预报为例,经A方案订正后各中心和多模式的集合平均消除了大量的小雨空报,其对小雨、中雨的订正效果很明显,对大雨以上的降水量级订正效果不明显。随着降水阈值增加,A方案的订正效果随之减弱。此方案对雨带走向的订正不明显,会使降水大值区量级降低甚至消失。采用B方案订正后,不仅可降低原始集合预报的空报率,还可对降水量级和落区进行订正,使降水预报的范围和量级与实况更接近,但对大量级降水,如50.0 mm以上的降水量级订正效果仍然不显著。

  相似文献   
14.
运用市场份额和亲景度指标,定量分析2000—2006年(2003年除外)甘肃省入境旅游客源市场的市场份额和亲景度的时空变化特征,并探讨了4种市场类型与4类亲景度市场的相关性,据此确定目前甘肃省入境旅游客源市场适宜发展的4类模式:重点市场、主要市场、潜在市场和机会市场,为甘肃省入境旅游客源市场定位和开拓提供科学依据,并提出甘肃省入境旅游发展的相关对策、措施。  相似文献   
15.
基于15d的精密卫星钟差数据,从不同角度全面分析6种常用钟差预报模型(LP模型、QP模型、GM模型、SA模型、ARIMA模型、KF模型)基于钟差一次差分预报原理的预报效果,得到以下结论:1)采用钟差一次差分预报原理,可以提高LP模型、SA模型、GM模型及KF模型对于GPS卫星钟差的3h预报精度,提高QP模型和ARIMA...  相似文献   
16.
In this paper, the numerical simulation bias of the non-hydrostatic version GRAPES-Meso (Mesoscale of the Global and Regional Assimilation and Prediction System) at the resolution of 0.18o for a torrential rain case, which happened in May 31st to June 1st 2005 over Hunan province, are diagnosed and investigated by using the radiosondes, intensive surface observation, and the operational global analysis data, and the sensitivity experimental results as well. It is shown in the result that the GRAPES-Meso could reproduce quite well the main features of large-cale circulation and the distribution of the accumulated 24h precipitation and the key locations of the torrential rainfall are captured reasonably well by the model. However, bias exist in the simulation of the mesoscale features of the torrential rain and details of the relevant systems, for example, the simulated rainfall that is too earlier in model integration and remarkable underprediction of the peak value of rainfall rates over the heaviest rainfall region, the weakness of the upper jet simulation and the overprediction of the south-west wind in the lower troposphere etc. The investigation reveals that the sources of the simulation bias are different. The erroneous model rainfall in the earlier integration stage over the heaviest rainfall region is induced by the model initial condition bias of the wind field at about 925hPa over the torrential rainfall region, where the bias grow rapidly and spread upward to about 600hPa level within the few hours into the integration and result in abnormal convergence of the wind and moisture, and thus the unreal rainfall over that region. The large bias on the simulated rainfall intensity over the heaviest rainfall region might be imputed to the following combined factors of (1) the simulation bias on the strength and detailed structures of the upper-level jet core which bring about significant underpredictions of the dynamic conditions (including upper-level divergence and the upward motion) for heavy rainfall due to unfavorable mesoscale vertical coupling between the strong upper-level divergence and lower-level convergence; and (2) the inefficient coupling of the cumulous parameterization scheme and the explicit moisture in the integration, which causes the failure of the explicit moisture scheme in generating grid-scale rainfall in a certain extent through inadequate convective adjustment and feedback to the grid-scale. In addition, the interaction of the combined two factors could form a negative feedback to the rainfall intensity simulation, and eventually lead to the obvious underprediction of the rainfall rate.  相似文献   
17.
General circulation model outputs are rarely used directly for quantifying climate change impacts on hydrology, due to their coarse resolution and inherent bias. Bias correction methods are usually applied to correct the statistical deviations of climate model outputs from the observed data. However, the use of bias correction methods for impact studies is often disputable, due to the lack of physical basis and the bias nonstationarity of climate model outputs. With the improvement in model resolution and reliability, it is now possible to investigate the direct use of regional climate model (RCM) outputs for impact studies. This study proposes an approach to use RCM simulations directly for quantifying the hydrological impacts of climate change over North America. With this method, a hydrological model (HSAMI) is specifically calibrated using the RCM simulations at the recent past period. The change in hydrological regimes for a future period (2041–2065) over the reference (1971–1995), simulated using bias‐corrected and nonbias‐corrected simulations, is compared using mean flow, spring high flow, and summer–autumn low flow as indicators. Three RCMs driven by three different general circulation models are used to investigate the uncertainty of hydrological simulations associated with the choice of a bias‐corrected or nonbias‐corrected RCM simulation. The results indicate that the uncertainty envelope is generally watershed and indicator dependent. It is difficult to draw a firm conclusion about whether one method is better than the other. In other words, the bias correction method could bring further uncertainty to future hydrological simulations, in addition to uncertainty related to the choice of a bias correction method. This implies that the nonbias‐corrected results should be provided to end users along with the bias‐corrected ones, along with a detailed explanation of the bias correction procedure. This information would be especially helpful to assist end users in making the most informed decisions.  相似文献   
18.
卫星导航系统中星载原子钟的钟差预报对于导航、定位及授时具有重要的作用。为了提高卫星钟差预报的精度,设计了一种两步确定卫星钟噪声协方差矩阵的Kalman滤波钟差预报模型。该方法首先基于Hadamard总方差确定卫星钟噪声协方差矩阵的初值,然后,使用方差递推法得到滤波过程中卫星钟的噪声协方差矩阵。使用GPS系统的星载铷钟数据进行短期预报,并与常用的二次多项式模型、灰色模型进行对比,结果表明:本文中提出的方法可以实现高精度的卫星钟差预报且预报效果优于两种常用模型,同时,该方法能够在一定程度上弥补预报误差随预报时间增加而不断变大的不足。  相似文献   
19.
艾青松  徐天河  孙大伟  任磊 《测绘学报》2016,45(Z2):132-138
根据北斗卫星导航系统星载原子钟自身的物理特性,采用武汉大学IGS数据中心发布的2016年1月1日至2016年11月1日共306天的事后钟差产品进行谱分析。分析结果表明:北斗卫星导航系统的3类卫星钟都存在一定的周期特性;其中GEO和IGSO卫星钟的主周期相对较为明显;GEO卫星钟的主周期依次为12、24、8和6h;IGSO的主周期为24、12、8和6h;而MEO的3个主周期为12.9、6.4和24h。依据各类原子钟的周期特性,同时对各天之间钟差的起始点偏差进行修正,并利用修正模型对北斗卫星钟差进行预报和精度分析。试验结果表明,改进的预报模型能显著提升北斗卫星的钟差预报精度,北斗卫星钟差24h、12h、6h的平均预报精度分别能达到6.55ns、3.17ns和1.76ns。  相似文献   
20.
Sea surface temperature SST obtained from the initial version of the Korea Operational Oceanographic System(KOOS) SST satellite have low accuracy during summer and daytime. This is attributed to the diurnal warming effect. Error estimation of SST data must be carried out to use the real-time forecasting numerical model of the KOOS. This study suggests two quality control methods for the KOOS SST system. To minimize the diurnal warming effect, SSTs of areas where wind speed is higher than 5 m/s were used. Depending on the wind threshold value, KOOS SST data for August 2014 were reduced by 0.15°C. Errors in SST data are considered to be a combination of random, sampling, and bias errors. To estimate bias error, the standard deviation of bias between KOOS SSTs and climatology SSTs were used. KOOS SST data yielded an analysis error standard deviation value similar to OSTIA and NOAA NCDC(OISST) data. The KOOS SST shows lower random and sampling errors with increasing number of observations using six satellite datasets. In further studies, the proposed quality control methods for the KOOS SST system will be applied through more long-term case studies and comparisons with other SST systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号