首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2192篇
  免费   360篇
  国内免费   332篇
测绘学   88篇
大气科学   289篇
地球物理   747篇
地质学   431篇
海洋学   925篇
天文学   40篇
综合类   59篇
自然地理   305篇
  2024年   3篇
  2023年   12篇
  2022年   27篇
  2021年   36篇
  2020年   64篇
  2019年   106篇
  2018年   65篇
  2017年   90篇
  2016年   85篇
  2015年   106篇
  2014年   104篇
  2013年   90篇
  2012年   74篇
  2011年   129篇
  2010年   96篇
  2009年   137篇
  2008年   221篇
  2007年   191篇
  2006年   128篇
  2005年   90篇
  2004年   87篇
  2003年   124篇
  2002年   117篇
  2001年   88篇
  2000年   90篇
  1999年   85篇
  1998年   78篇
  1997年   62篇
  1996年   58篇
  1995年   37篇
  1994年   47篇
  1993年   35篇
  1992年   25篇
  1991年   25篇
  1990年   17篇
  1989年   13篇
  1988年   11篇
  1987年   4篇
  1986年   9篇
  1985年   5篇
  1984年   2篇
  1982年   4篇
  1980年   3篇
  1978年   1篇
  1973年   1篇
  1954年   2篇
排序方式: 共有2884条查询结果,搜索用时 515 毫秒
101.
Environmental vibrations from recent high-speed trains are becoming a special concern in the civil and environmental engineering field since they can give detrimental effects to residents, sensitive equipments and high-tech production facilities in the vicinity of train tacks. Herein, aiming at the vibration mitigation for a specific high-tech industrial area, the low-frequency vibrations from a train viaduct are targeted over an anticipated range. A theoretically designed innovative countermeasure, called honeycomb wave impeding barrier (WIB) for a wave impeding barrier, is introduced and its effects are investigated by computer simulation. The present WIB is based on the wave dispersion phenomenon that can modulate the incoming wavelengths into the shorter wavelengths, creating an apparent wave cut-off characteristic in the wave field across WIB installation area. The shorter wavelengths are further impeded due to the impedance ratio of the WIB walls and in-fill materials and absorbed by the in-fills more. The three-dimensional FEM simulation demonstrates a dramatic reduction effect that is difficult to achieve by conventional measures.  相似文献   
102.
The concept of in-plane and anti-plane shaking is introduced with a rigid block on a plane surface with Coulomb friction. Using a hypoplastic constitutive relation to model the mechanical behaviour of the soil, numerical solutions for a rigid block on a thin dry or saturated soil layer are obtained. The coupled nature of dynamic problems involving granular materials is shown, i.e. the motion of the block changes the soil state—skeleton stresses and density—which in turn affects the block motion. Motions of the block as well as soil response can be more realistically calculated by the new model. The same constitutive equation is applied to the numerical simulation of the propagation of plane waves in homogeneous and layered level soil deposits induced by a wave coming from below. Experiments with a novel laminar shake box as well as real seismic records from well-documented sites during strong earthquakes are used to verify the adequacy of the hypoplasticity-based numerical model for the prediction of soil response during strong earthquakes. The response of a homogeneous earth dam subjected to in-plane and anti-plane shaking is investigated numerically. In-plane and anti-plane shaking is shown to cause nearly the same spreading of a sand dam under drained conditions, whereas under undrained conditions anti-plane shaking causes stronger spreading of the dam. The dynamic behaviour of a breakwater founded on rockfill and soft clay during the 1995 Kobe earthquake is back-calculated to show the good performance of the proposed numerical model also with a structure. Section 9 deals with buildings on mattresses of densified cohesionless soils or fine-grained soils with granular columns, slopes with ‘hidden’ dams and structures on piles traversing clayey slopes to show the suitability of hypoplasticity-based models for the earthquake-resistant design and safety assessment of geotechnical systems.  相似文献   
103.
104.
105.
This paper discusses surface displacements, surface strain, rocking, and energy partitioning during reflection-of-plane waves in a fluid-saturated poroelastic half-space. The medium is modeled by Biot's theory, and is assumed to be saturated with inviscid fluid. A linear porosity-modulus relation based on experimental data on sandstones is used to determine the material parameters for Biot's model. Numerical results in terms of angle of incident waves and Poisson's ratio are illustrated for various porosities and degrees of solid frame stiffness. The results show that the amount of solid frame stiffness controls the response of a fluid-saturated porous system. A poroelastic medium with essentially dry-frame stiffness behaves like an elastic medium, and the influence of pore fluid increases as dry-frame stiffness is reduced. The effects of a second P-wave become noticeable in poroelastic media with low dry-frame stiffness.  相似文献   
106.
It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to a lack of analytical evaluation techniques. Thus, a novel technique is proposed herein to evaluate its efficiency for application to nonlinear systems by introducing two parameters to describe the stiffness change. As a result, the numerical properties and error propagation characteristics of the γ-function explicit method for the pseudodynamic testing of a nonlinear system are analytically assessed. It is found that the upper stability limit decreases as the step degree of nonlinearity increases; and it increases as the current degree of nonlinearity increases. It is also shown that this integration method provides favorable numerical dissipation not only for linear elastic systems but also for nonlinear systems. Furthermore, error propagation analysis reveals that the numerical dissipation can effectively suppress the severe error propagation of high frequency modes while the low frequency responses are almost unaffected for both linear elastic and nonlinear systems.  相似文献   
107.
On the basis of Biot dynamic theory, an analytic solution of two-dimensional scattering and diffraction of plane SV waves by circular cylindrical canyons in a half space of saturated porous media is presented in this paper for the first time. The solution is obtained by employing the Fourier–Bessel series expansion technique. Parametric studies had been carried out, which includes: the angle of incidence, the frequency of the incident SV wave, the porosity of saturated porous medium and the stiffness and Poisson's ratio of the solid-skeleton. All the outcomes are useful for the seismic analysis of the surface topography conditions.  相似文献   
108.
109.
This paper addresses size and boundary effects on wave propagation, fracture pattern development and fragmentation in small scale laboratory-size specimens for model blasting. Small block type specimens are centre-line loaded by linear explosive charges and supersonically detonated. Using elastic wave propagation theory and fracture mechanics it is shown that the type of boundary conditions which prevail at the outer boundary of the cylinder control the extension of bore-hole cracking and fragmentation within the body of the cylinder. In the case of a composite block where a cylindrical core of different material is embedded, the level of fracturing and fragmentation is controlled by the separation of the interface which in turn depends on the relative dimensions of the core and the block. The most important parameter is the ratio between the length of the pulse (space-wise or time-wise) and the characteristic dimensions of the models, i.e. in this case the dimensions of the core and the mantel. Stress wave superposition effects occur in the corner sections of the mantel. Theoretical results are in good agreement with recent experimental findings.  相似文献   
110.
The effects of fractures on wave propagation problems are increasingly abstracting the attention of scholars and engineers in rock engineering field. This study aims to fully validate the ability of discontinuous deformation analysis (DDA) to model normal P‐wave propagation across rock fractures. The effects of a single fracture and multiple parallel fractures are all tested. The results indicate that DDA can accurately reflect the fracture effects, including the fractures stiffness, the fracture spacing and the fracture number, and the effects of incident wave frequency on one‐dimensional P‐wave propagation problems. Thus, DDA is able to deal well with normal incident P‐wave propagation problems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号