首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2574篇
  免费   404篇
  国内免费   398篇
测绘学   118篇
大气科学   369篇
地球物理   930篇
地质学   634篇
海洋学   1043篇
天文学   26篇
综合类   95篇
自然地理   161篇
  2024年   2篇
  2023年   13篇
  2022年   42篇
  2021年   73篇
  2020年   69篇
  2019年   124篇
  2018年   78篇
  2017年   103篇
  2016年   112篇
  2015年   114篇
  2014年   127篇
  2013年   128篇
  2012年   103篇
  2011年   178篇
  2010年   120篇
  2009年   167篇
  2008年   239篇
  2007年   202篇
  2006年   134篇
  2005年   105篇
  2004年   118篇
  2003年   139篇
  2002年   108篇
  2001年   103篇
  2000年   97篇
  1999年   78篇
  1998年   85篇
  1997年   62篇
  1996年   53篇
  1995年   60篇
  1994年   45篇
  1993年   51篇
  1992年   32篇
  1991年   25篇
  1990年   19篇
  1989年   19篇
  1988年   12篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   8篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1977年   5篇
  1976年   1篇
  1972年   1篇
排序方式: 共有3376条查询结果,搜索用时 31 毫秒
41.
Long Waves Associated with Bichromatic Waves   总被引:1,自引:0,他引:1  
A numerical model of low frequency waves is presented. The model is based on that of Roelvink (1993), but the nu-merical techniques used in the solution are based on the so-called Weighted-Average Flux (WAF) method with Time-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number of computational points to be used, and is particularly efficient in modeling wave setup. The short wave (or primary wave) energy equation is solved with a traditional Lax-Wendroff technique. A nonlinear wave theory is introduced. The model described in this paper is found to be satisfactory in modeling low frequency waves associated with incident bichromalic waves.  相似文献   
42.
Two numerical formulations of the breaking phenomenon were implemented in a numerical model for random wave propagation based on the elliptic formulation of the mild-slope equation. The randomness of the wave field was simulated based on a spectral component method, in which the 3-D spectrum is discretised in components of equal energy. One of the breaking process formulations is based on the concept of breaking each independent spectral component. The other is based on the distribution of the local amount of energy dissipated through the independent spectral components. The model based on the concept of breaking each independent spectral component produces the best estimates of the wave field, when the numerical results are compared with laboratory data.  相似文献   
43.
The regular wave interaction with a twin concentric porous circular cylinder system consisting of an inner impermeable cylinder and an outer perforated cylinder was studied through physical model and numerical model studies. The experiments were carried out on the twin concentric cylinder model in a wave flume to study the wave runup and rundown at the leading and trailing edges of the perforated cylinder. It was found that the maximum wave runup on the perforated cylinder is almost same as the incident wave height. The experimental results were used to develop the predictive formulae for the wave runup and rundown on the perforated cylinder, which can be easily used for design applications. The wave runup profiles around the perforated cylinder for different values of ka and porosities were studied numerically using Green's Identity Method. The results of the numerical study are presented and compared with the experimental measurements.  相似文献   
44.
The radiation and diffraction of linear water waves by an infinitely long rectangular structure submerged in oblique seas of finite depth is investigated. The analytical expressions for the radiated and diffracted potentials are derived as infinite series by use of the method of separation of variables. The unknown coefficients in the series are determined by the eigenfunction expansion matching method. The expressions for wave forces, hydrodynamic coefficients and reflection and transmission coefficients are given and verified by the boundary element method. Using the present analytical solution, the hydrodynamic influences of the angle of incidence, the submergence, the width and the thickness of the structure on the wave forces, hydrodynamic coefficients, and reflection and transmission coefficients are discussed in detail.  相似文献   
45.
Yong Liu  Yu-cheng Li  Bin Teng 《Ocean Engineering》2007,34(17-18):2364-2373
This study examines the hydrodynamic performance of a new perforated-wall breakwater. The breakwater consists of a perforated front wall, a solid back wall and a submerged horizontal porous plate installed between them. The horizontal porous plate enhances the stability and wave-absorbing capacity of the structure. An analytical solution based on linear potential theory is developed for the interaction of water waves with the new proposed breakwater. According to the division of the structure, the whole fluid domain is divided into three sub-domains, and the velocity potential in each domain is obtained using the matched eigenfunction method. Then the reflection coefficient and the wave forces and moments on the perforated front wall and the submerged horizontal porous plate are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a perforated-wall breakwater with a submerged horizontal solid plate [Yip, T.L., Chwang, A.T., 2000. Perforated wall breakwater with internal horiontal plate. Journal of Engineering Mechanics ASCE 126 (5), 533–538] and a vertical wall with a submerged horizontal porous plate [Wu, J.H., Wan, Z.P., Fang, Y., 1998. Wave reflection by a vertical wall with a horizontal submerged porous plate. Ocean Engineering 25 (9), 767–779]. Numerical results show that with suitable geometric porosity of the front wall and horizontal plate, the reflection coefficient will be always rather small if the relative wave absorbing chamber width (distance between the front and back walls versus incident wavelength) exceeds a certain small value. In addition, the wave force and moment on the horizontal plate decrease significantly with the increase of the plate porosity.  相似文献   
46.
Statistics of nonlinear wave crests and groups   总被引:1,自引:0,他引:1  
M. Aziz Tayfun   《Ocean Engineering》2006,33(11-12):1589-1622
Groups of large nonlinear waves with sharper higher crests can pose hazards to ships, induce harbor resonance and cause wave-overtopping of fixed and floating structures. Past interest in wave groups has mostly been focused on the statistics and modeling of linear wave groups. Studies on nonlinear wave groups are surprisingly few, and address deep water waves only. Here, statistics of nonlinear wave crests and wave-crest groups in deep and transitional water depths are considered, using an appropriate second-order representation for crest heights and the continuous wave-envelope approach. In particular, theoretical expressions describing the statistics of nonlinear wave crests and their groups are posed in the form of a simple second-order transformation of well-known results on linear waves. Predictions from the transformation so posed compare well with nonlinear wave data gathered in the North Sea, and demonstrate that nonlinearities do affect the statistics of large wave crests and their groups significantly.  相似文献   
47.
Unlike in the open sea, the use of wind information for forecasting waves may encounter more ambiguous uncertainties in the coastal or harbor area due to the influence of complicated geometric configurations. Thus this paper attempts to forecast the waves based on learning the characteristics of observed waves, rather than the use of the wind information. This is reported in this paper by the application of the artificial neural network (ANN), in which the back-propagation algorithm is employed in the learning process for obtaining the desired results. This model evaluated the interconnection weights among multi-stations based on the previous short-term data, from which a time series of waves at a station can be generated for forecasting or data supplement based on using the neighbor stations data. Field data are used for testing the applicability of the ANN model. The results show that the ANN model performs well for both wave forecasting and data supplement when using a short-term observed wave data.  相似文献   
48.
1 .Introduction Wave breaking and associated whitecapping have long beeninteresting due totheir close relationto many fields of ocean study,including air-sea interaction,remote sensing,ocean engineering,aswell as wave dynamics .The breaking probabilityBan…  相似文献   
49.
A novel technique in analyzing non-linear wave-wave interaction   总被引:1,自引:0,他引:1  
During wave growth non-linear wave–wave interactions cause transfer of some wave energy from lower to higher wave periods as the spectrum grows. Wavelet bicoherence, which is a new technique in the analysis of wind–wave and wave–wave interactions, is used to analyze non-linear wave–wave interactions. A selected record of wind wave that contains the maximum wave height observed during 6 h of wave generation is divided into five segments and wavelet bicoherence is computed for the whole record, and for all divided segments. The study shows that the non-linear wave–wave interaction occurs at different bicoherence levels and these levels are different from one segment to another due to the non-stationarity feature of the examined data set.  相似文献   
50.
潜艇疲劳载荷的概率模型   总被引:1,自引:0,他引:1  
探讨了建立潜艇疲劳载荷概率模型的方法,引入了正态分布和两参数威布尔分布两种概率模型。两参数威布尔分布较适合于用来描述潜艇下潜深度分布的概率特征。可根据潜艇的设计参数、任务及航行区域等因素来选取最可能的分布形式获得潜深分布密度函数。潜艇疲劳热点部位的应力(应变)幅值分布,可由应力(应变)和潜深的关系通过相应的变换得到。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号