首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7316篇
  免费   1001篇
  国内免费   1116篇
测绘学   535篇
大气科学   989篇
地球物理   2376篇
地质学   2720篇
海洋学   1351篇
天文学   85篇
综合类   401篇
自然地理   976篇
  2024年   32篇
  2023年   54篇
  2022年   176篇
  2021年   238篇
  2020年   257篇
  2019年   303篇
  2018年   218篇
  2017年   303篇
  2016年   306篇
  2015年   369篇
  2014年   414篇
  2013年   435篇
  2012年   397篇
  2011年   490篇
  2010年   351篇
  2009年   487篇
  2008年   526篇
  2007年   489篇
  2006年   446篇
  2005年   416篇
  2004年   320篇
  2003年   270篇
  2002年   265篇
  2001年   223篇
  2000年   251篇
  1999年   214篇
  1998年   214篇
  1997年   172篇
  1996年   147篇
  1995年   129篇
  1994年   112篇
  1993年   105篇
  1992年   82篇
  1991年   46篇
  1990年   40篇
  1989年   32篇
  1988年   36篇
  1987年   12篇
  1986年   6篇
  1985年   11篇
  1984年   11篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   6篇
  1977年   5篇
  1976年   1篇
  1954年   3篇
排序方式: 共有9433条查询结果,搜索用时 15 毫秒
51.
Seasonal and spatial variations of iceberg drift were studied using continuous satellite scatterometer images off Dronning Maud Land, East Antarctica. Generally, iceberg drift speed showed a westward increase to the Greenwich Meridian. Seasonal variations of the drift speed were high in autumn—early winter and low in spring, and their magnitudes also increased westward. Seasonal variations of the drift speed were significantly correlated with variations of sea levels at Syowa and Mawson Stations, and hence qualitatively consistent with geostrophic current variations. Thus, the scatterometer data are demonstrated to be useful in monitoring iceberg trajectory and oceanic current variations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
52.
The Formation and Circulation of the Intermediate Water in the Japan Sea   总被引:1,自引:0,他引:1  
In order to clarify the formation and circulation of the Japan/East Sea Intermediate Water (JESIW) and the Upper portion of the Japan Sea Proper Water (UJSPW), numerical experiments have been carried out using a 3-D ocean circulation model. The UJSPW is formed in the region southeast off Vladivostok between 41°N and 42°N west of 136°E. Taking the coastal orography near Vladivostok into account, the formation of the UJSPW results from the deep water convection in winter which is generated by the orchestration of fresh water supplied from the Amur River and saline water from the Tsushima Warm Current under very cold conditions. The UJSPW formed is advected by the current at depth near the bottom of the convection and penetrates into the layer below the JESIW. The origin of the JESIW is the low salinity coastal water along the Russian coast originated by the fresh water from the Amur River. The coastal low salinity water is advected by the current system in the northwestern Japan Sea and penetrates into the subsurface below the Tsushima Warm Current region forming a subsurface salinity minimum layer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
53.
李赶先  卢博 《台湾海峡》2001,20(3):308-313
本文在南沙群岛永署礁南永1井珊瑚礁岩心声速测量的基础上,研究了珊瑚礁岩心声速的垂向跃变特征和相应地层沉积相变及地层侵蚀间断面的关系,分析了珊瑚礁岩心相变造成其声速跃变的原因,阐明了海平面升降形式珊瑚礁地层侵蚀间断面和产生相变的具体过程, 明了珊瑚礁岩心声速垂向跃变与相应地层古气候和海平面变化的关系,该项研究在岛礁工程建设和礁灰岩区石油勘探声学测井以及西太平洋边缘海古海洋学研究学方面具有重要的实用价值和理论意义。  相似文献   
54.
利用卫星测高技术监测厄尔尼诺和拉尼娜现象   总被引:2,自引:0,他引:2  
利用美国宇航局和法国空间局联合公布的T/P数据(1993-2000年)和Jason-1数据(2002—2006年),由共线法计算了热带太平洋地区海平面高度的变化。根据T/P和Jason-1数据计算的海面月变化异常图,分别研究了和分析了1997-1998年的厄尔尼诺和拉尼娜现象、2002-2003年厄尔尼诺现象的变化发展过程。  相似文献   
55.
Most marginal seas in the North Pacific are fed by nutrients supported mainly by upwelling and many are undersaturated with respect to atmospheric CO2 in the surface water mainly as a result of the biological pump and winter cooling. These seas absorb CO2 at an average rate of 1.1 ± 0.3 mol C m−2yr−1 but release N2/N2O at an average rate of 0.07 ± 0.03 mol N m−2yr−1. Most of primary production, however, is regenerated on the shelves, and only less than 15% is transported to the open oceans as dissolved and particulate organic carbon (POC) with a small amount of POC deposited in the sediments. It is estimated that seawater in the marginal seas in the North Pacific alone may have taken up 1.6 ± 0.3 Gt (1015 g) of excess carbon, including 0.21 ± 0.05 Gt for the Bering Sea, 0.18 ± 0.08 Gt for the Okhotsk Sea; 0.31 ± 0.05 Gt for the Japan/East Sea; 0.07 ± 0.02 Gt for the East China and Yellow Seas; 0.80 ± 0.15 Gt for the South China Sea; and 0.015 ± 0.005 Gt for the Gulf of California. More importantly, high latitude marginal seas such as the Bering and Okhotsk Seas may act as conveyer belts in exporting 0.1 ± 0.08 Gt C anthropogenic, excess CO2 into the North Pacific Intermediate Water per year. The upward migration of calcite and aragonite saturation horizons due to the penetration of excess CO2 may also make the shelf deposits on the Bering and Okhotsk Seas more susceptible to dissolution, which would then neutralize excess CO2 in the near future. Further, because most nutrients come from upwelling, increased water consumption on land and damming of major rivers may reduce freshwater output and the buoyancy effect on the shelves. As a result, upwelling, nutrient input and biological productivity may all be reduced in the future. As a final note, the Japan/East Sea has started to show responses to global warming. Warmer surface layer has reduced upwelling of nutrient-rich subsurface water, resulting in a decline of spring phytoplankton biomass. Less bottom water formation because of less winter cooling may lead to the disappearance of the bottom water as early as 2040. Or else, an anoxic condition may form as early as 2200 AD. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
56.
A series of laboratory experiments was carried out to investigate the strong reflection of regular water waves over a train of submerged breakwaters. Rectangular and trapezoidal shapes of submerged breakwaters are employed and compared for reflecting capability of incident waves. Measured reflection coefficients of regular waves over impermeable submerged breakwaters are verified by comparing with those of the eigenfunction expansion method. A very good agreement is observed. Reflection coefficients of permeable submerged breakwaters are less than those of impermeable breakwaters. The trapezoidal shape is recommended for a submerged breakwater in terms of reflecting capability and practical application.  相似文献   
57.
呼伦湖的近期扩张及其与全球气候变化的关系   总被引:10,自引:0,他引:10  
通过近20多年湖泊水量平衡分析发现,湖泊水位变化主要由湖盆内径流补给量的丰枯决定。进一步分析揭示,呼伦湖地区乃至整个东北地区,本世纪以来随气温升高,随水有增加的趋势。降水增加导致入湖径流量,湖水位上升,呼伦湖本世纪以来的扩张与内蒙古东部地区其他内陆湖泊的变化一致,但这在我国乃至整个亚洲内陆干旱或半干旱区是独一无二的,为此成为这一地区气候变化的指示器。  相似文献   
58.
A repeat hydrographic section has been maintained over two decades along the 180° meridian across the subarctic-subtropical transition region. The section is naturally divided into at least three distinct zones. In the Subarctic Zone north of 46°N, the permanent halocline dominates the density stratification, supporting a subsurface temperature minimum (STM). The Subarctic Frontal Zone (SFZ) between 42°–46°N is the region where the subarctic halocline outcrops. To the south is the Subtropical Zone, where the permanent thermocline dominates the density stratification, containing a pycnostad of North Pacific Central Mode Water (CMW). The STM water colder than 4°C in the Subarctic Zone is originated in the winter mixed layer of the Bering Sea. The temporal variation of its core temperature lags 12–16 months behind the variations of both the winter sea surface temperature (SST) and the summer STM temperature in the Bering Sea, suggesting that the thermal anomalies imposed on the STM water by wintertime air-sea interaction in the Bering Sea spread over the western subarctic gyre, reaching the 180° meridian within a year or so. The CMW in this section originates in the winter mixed layer near the northern edge of the Subtropical Zone between 160°E and 180°. The CMW properties changed abruptly from 1988 to 1989; its temperature and salinity increased and its potential density decreased. It is argued that these changes were caused by the climate regime shift in 1988/1989 characterized by weakening of the Aleutian Low and the westerlies and increase in the SST in the subarctic-subtropical transition region. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
59.
Several large deployments of neutrally buoyant floats took place within the Antarctic Intermediate (AAIW), North Atlantic Deep Water (NADW), and the Antarctic Bottom Water (AABW) of the South Atlantic in the 1990s and a number of hydrographic sections were occupied as well. Here we use the spatially and temporally averaged velocities measured by these floats, combined with the hydrographic section data and various estimates of regional current transports from moored current meter arrays, to determine the circulation of the three major subthermocline water masses in a zonal strip across the South Atlantic between the latitudes of 19°S and 30°S. We concentrate on this region because the historical literature suggests that it is where the Deep Western Boundary Current containing NADW bifurcates. In support of this notion, we find that a net of about 5 Sv. of the 15–20 Sv that crosses 19°S does continue zonally eastward at least as far as the Mid-Atlantic Ridge. Once across the ridge it takes a circuit to the north along the ridge flanks before returning to the south in the eastern half of the Angola Basin. The data suggest that the NADW then continues on into the Indian Ocean. This scheme is discussed in the context of distributions of dissolved oxygen, silicate and salinity. In spite of the many float-years of data that were collected in the region a surprising result is that their impact on the computed solutions is quite modest. Although the focus is on the NADW we also discuss the circulation for the AAIW and AABW layers.  相似文献   
60.
依据模糊集合理论,提出了反求水文地质参数的一种新方法,即用模糊模式识别评价计算水位与观测水位的拟合程度,依模糊ISODATA聚类法的原理建立目标函数,以相应的聚类中心作为要求的水文地质参数。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号