首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4689篇
  免费   668篇
  国内免费   613篇
测绘学   185篇
大气科学   741篇
地球物理   1777篇
地质学   1666篇
海洋学   637篇
天文学   69篇
综合类   197篇
自然地理   698篇
  2024年   20篇
  2023年   32篇
  2022年   72篇
  2021年   123篇
  2020年   132篇
  2019年   145篇
  2018年   109篇
  2017年   192篇
  2016年   194篇
  2015年   231篇
  2014年   282篇
  2013年   317篇
  2012年   224篇
  2011年   308篇
  2010年   220篇
  2009年   295篇
  2008年   382篇
  2007年   336篇
  2006年   309篇
  2005年   255篇
  2004年   211篇
  2003年   181篇
  2002年   167篇
  2001年   149篇
  2000年   164篇
  1999年   140篇
  1998年   139篇
  1997年   109篇
  1996年   101篇
  1995年   71篇
  1994年   78篇
  1993年   48篇
  1992年   44篇
  1991年   40篇
  1990年   25篇
  1989年   27篇
  1988年   26篇
  1987年   11篇
  1986年   5篇
  1985年   13篇
  1984年   10篇
  1983年   4篇
  1982年   4篇
  1981年   8篇
  1980年   3篇
  1978年   6篇
  1977年   2篇
  1976年   1篇
  1973年   2篇
  1954年   2篇
排序方式: 共有5970条查询结果,搜索用时 31 毫秒
961.
在2003年10月27日和28日观测的太湖水质光谱试验数据的支持下,利用数值模拟方法研究了试验数据误差与水质浓度反演模型经验常数之间的关系。研究结果表明,当试验数据误差分别服从正态分布与均匀分布时,反演模型的经验常数随着试验数据误差的增加而呈发散状态。根据试验数据误差与反演精度的关系可知,26.58%的试验误差对应着30%的反演精度,这就意味着在不考虑遥感影像处理所产生误差的前提下,严格控制试验数据误差在26.58%以内,是反演精度打破±30%的技术瓶颈的关键要素之一。  相似文献   
962.
Information about the distribution of grass foliar nitrogen (N) and phosphorus (P) is important for understanding rangeland vitality and for facilitating the effective management of wildlife and livestock. Water absorption effects in the near-infrared (NIR) and shortwave-infrared (SWIR) regions pose a challenge for nutrient estimation using remote sensing. The aim of this study was to test the utility of water-removed (WR) spectra in combination with partial least-squares regression (PLSR) and stepwise multiple linear regression (SMLR) to estimate foliar N and P, compared to spectral transformation techniques such as first derivative, continuum removal and log-transformed (Log(1/R)) spectra. The study was based on a greenhouse experiment with a savanna grass species (Digitaria eriantha). Spectral measurements were made using a spectrometer. The D. eriantha was cut, dried and chemically analyzed for foliar N and P concentrations. WR spectra were determined by calculating the residual from the modelled leaf water spectra using a nonlinear spectral matching technique and observed leaf spectra. Results indicated that the WR spectra yielded a higher N retrieval accuracy than a traditional first derivative transformation (R2=0.84, RMSE = 0.28) compared to R2=0.59, RMSE = 0.45 for PLSR. Similar trends were observed for SMLR. The highest P retrieval accuracy was derived from WR spectra using SMLR (R2=0.64, RMSE = 0.067), while the traditional first derivative and continuum removal resulted in lower accuracy. Only when using PLSR did the first derivative result in a higher P retrieval accuracy (R2=0.47, RMSE = 0.07) than the WR spectra (R2=0.43, RMSE = 0.070). It was concluded that the water removal technique is a promising technique to minimize the perturbing effect of foliar water content when estimating grass nutrient concentrations.  相似文献   
963.
In arid countries worldwide, social conflicts between irrigation-based human development and the conservation of aquatic ecosystems are widespread and attract many public debates. This research focuses on the analysis of water and agricultural policies aimed at conserving groundwater resources and maintaining rural livelihoods in a basin in Spain's central arid region. Intensive groundwater mining for irrigation has caused overexploitation of the basin's large aquifer, the degradation of reputed wetlands and has given rise to notable social conflicts over the years. With the aim of tackling the multifaceted socio-ecological interactions of complex water systems, the methodology used in this study consists in a novel integration into a common platform of an economic optimization model and a hydrology model WEAP (Water Evaluation And Planning system). This robust tool is used to analyze the spatial and temporal effects of different water and agricultural policies under different climate scenarios. It permits the prediction of different climate and policy outcomes across farm types (water stress impacts and adaptation), at basin's level (aquifer recovery), and along the policies’ implementation horizon (short and long run). Results show that the region's current quota-based water policies may contribute to reduce water consumption in the farms but will not be able to recover the aquifer and will inflict income losses to the rural communities. This situation would worsen in case of drought. Economies of scale and technology are evidenced as larger farms with cropping diversification and those equipped with modern irrigation will better adapt to water stress conditions. However, the long-term sustainability of the aquifer and the maintenance of rural livelihoods will be attained only if additional policy measures are put in place such as the control of illegal abstractions and the establishing of a water bank. Within the policy domain, the research contributes to the new sustainable development strategy of the EU by concluding that, in water-scarce regions, effective integration of water and agricultural policies is essential for achieving the water protection objectives of the EU policies. Therefore, the design and enforcement of well-balanced region-specific polices is a major task faced by policy makers for achieving successful water management that will ensure nature protection and human development at tolerable social costs. From a methodological perspective, this research initiative contributes to better address hydrological questions as well as economic and social issues in complex water and human systems. Its integrated vision provides a valuable illustration to inform water policy and management decisions within contexts of water-related conflicts worldwide.  相似文献   
964.
The “Big Dry”, a prolonged dry period in Australia from 1997 to 2009, dried out much of the Murray-Darling Basin (MDB) and resulted in large agricultural losses and degraded river ecosystems. Climate projections are that dry conditions in the MDB are likely to be more regular and severe than ever before, and recent policy initiatives are likely to reduce consumptive water use and redirect water to ecosystem management. This paper aims to develop an understanding of the interactions between water policy and irrigation practices by deriving lessons from drought management in irrigated agriculture of the MDB during the Big Dry, and furthermore, to draw out lessons to enhance the preparedness of irrigated agriculture for a future drier climate and reduced water availability. Reviews of irrigation farmers’ practices, attitudes and capacity to manage during prolonged droughts in the MDB, and the evolution of agricultural water policy in Australia since 1990 were made. It is clear that farmers could be better prepared to deal with a drier climate if their water management practices, e.g. irrigation methods and soil moisture measuring tools are improved, if the impediments to the uncertainty of water allocation and low water availability could be overcome, and if well-targeted research and extension could assist farmers to use water more wisely. It is also clear that Australian water policy could be better prepared in terms of assisting irrigated agriculture to deal with a drier climate. Key areas are reduction of barriers and distortions to water trading, optimizing the environmental water allocation, and seeking mutual benefits between environmental water allocation and irrigated agriculture, improvement of the cost-effectiveness of investments in water supply infrastructure, facilitating carryover and capacity sharing at larger scales, and provision of accurate, accessible and useful water information at different scales. An approach to irrigation practice and water policy is proposed based on past experience and potential opportunities. The approach is a set of linked strategies for more robust agricultural production and a more sustainable environment under a drier climate and reduced water availability.  相似文献   
965.
Perfluorinated compounds (PFCs) have emerged as significant global environmental pollutants with persistent, bioaccumulative and toxic properties. The aim of this study was to determine the occurrence of PFCs in water (wastewater, submarine emissaries and port-waters), sediment and transplanted mussels in estuarine areas of high urban and industrial impact from Northern Spain. Five PFCs of industrial use were studied: perfluorooctanesulfonate, perfluorohexanesulfonate, perfluorobutanesulfonate, perfluorooctanoate acid and perfluorononanoate acid. After selective extraction, samples were analyzed by Ultra Performance Liquid Chromatography coupled to tandem mass spectrometry. ΣPFCs ranged from 0.06 to 10.9 ng/L in water, with higher levels in wastewater treatment plants effluents and port waters than in submarine emissaries. Little accumulation was observed in sediments and mussels with ΣPFCs ranging from 0.01-0.13 ng/g dw and 0.01-0.06 ng/g ww, respectively. Most ubiquitous compounds were PFOS and PFOA. Mass fluxes of PFCs to the Cantabrian Sea are estimated and the impact to the coastal ecosystem is discussed.  相似文献   
966.
The Adriatic coast of Punta Marina (Ravenna) is protected by 3-km long low crested breakwater structures (LCSs). Through a 3-years long multidisciplinar study, we assessed the impact of such defensive structures on environmental and biological condition. LCSs create pools where conditions are very different from the surrounding nearshore system. Mechanical disturbance by currents and waves varied greatly in intensity and frequency between seaward and landward sides of the structures. Sedimentary budget was positive at the landward side, but it was due to a gain on the seafloor and not on the emerged beach. The budget at seaward was negative. LCSs determine differences in benthic assemblages, alter the seasonal pattern of communities, and modify seasonal fluctuations of animal assemblages. Landward sheltered areas can be seen as “lagoonal island” surrounded by a “sea of marine habitat”. Differences in ecological quality status, obtained through M-AMBI, are due to the sum of these factors.  相似文献   
967.
Quantifying the uncertainty associated with monitoring protocols is essential to prevent the misclassification of ecological status and to improve sampling design. We assessed the Posidonia oceanica multivariate index (POMI) bio-monitoring program for its robustness in classifying the ecological status of coastal waters within the Water Framework Directive. We used a 7-year data set covering 30 sites along 500 km of the Catalonian coastline to examine which version of POMI (14 or 9 metrics) maximises precision in classifying the ecological status of meadows. Five factors (zones within a site, sites within a water body, depth, years and surveyors) that potentially generate classification uncertainty were examined in detail. Of these, depth was a major source of uncertainty, while all the remaining spatial and temporal factors displayed low variability. POMI 9 matched POMI 14 in all factors, and could effectively replace it in future monitoring programs.  相似文献   
968.
According to the European Water Framework Directive, the ecological status (ES) of a water body is determined by comparing observation data with undisturbed Reference Conditions (RCs). Defining RCs is crucial when evaluating the ES of a water body as it strongly affects the final outcome of any index application. Identifying RCs by observing real sites is not feasible in many marine environments, such as the Emilia-Romagna coast (Italy, N-Adriatic Sea). We used a statistical approach on a large dataset to derive RCs for the application of the benthic index M-AMBI in this area. We then applied M-AMBI to samples collected along a gradient of presumed environmental disturbance. The results put 14.8% of the Emilia-Romagna samples in “High” ES, 60.2% in “Good”, 23.0% in “Moderate” and 2.0% in “Poor”, showing a spatial gradient of improving quality. These results are in agreement with the extensive ecological knowledge available for this area.  相似文献   
969.
Employing bed load formulae hydraulic geometry relations were derived for stream width, sediment transport velocity, and bed slope. The relations were examined in terms of friction factor, bed load discharge, bed load diameter, and water discharge. Two fundamental approaches to the prediction of hydraulic geometry have been developed. The first and most widely adopted approach is based on empirical equations whereas the second is based on solution of the governing equations of flow. The applied bed load formulae belong to different authors. Here, the comparison with the other derived relations is presented.  相似文献   
970.
Water quality in lakes is influenced by a large number of watershed and lake characteristics. In this study, we examined the relative effects of watershed land use and lake morphology on the trophic state of 19 lakes in the Yunnan plateau and lower Yangtze floodplain, the two most eutrophic regions in China. Trophic state parameters consisted of total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll‐a, Secchi depth, and trophic state index, while lake morphometric variables included area, maximum depth, mean depth, water residence time (WRT), volume, and length to width ratio. Percentages of forest, grassland, cropland, unused land, built‐up land, and water body in each lake's watershed were extracted from a land use map interpreted from Landsat TM images. A t‐test indicated that lower Yangtze floodplain lakes were shallower and had higher percentages of cropland and built‐up land in watersheds than Yunnan plateau lakes. Pearson's correlation analysis indicated that both watershed land use and lake morphometric variables were significantly related to most of the trophic state parameters. However, stepwise regression analyses demonstrated that the trophic state of the lower Yangtze floodplain lakes was mainly controlled by the percentages of cropland and built‐up land in watersheds, while that of Yunnan plateau lakes was mostly determined by the lake depth and WRT. These results suggest that the relative effects of watershed land use and lake morphology on lake trophic state are dependent on the lake's location. This study can provide some useful information in watershed land use management for controlling eutrophication in Chinese lakes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号