首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10085篇
  免费   2116篇
  国内免费   3470篇
测绘学   1006篇
大气科学   4632篇
地球物理   786篇
地质学   5422篇
海洋学   1443篇
天文学   73篇
综合类   899篇
自然地理   1410篇
  2024年   110篇
  2023年   365篇
  2022年   495篇
  2021年   535篇
  2020年   432篇
  2019年   494篇
  2018年   343篇
  2017年   393篇
  2016年   379篇
  2015年   444篇
  2014年   739篇
  2013年   650篇
  2012年   644篇
  2011年   649篇
  2010年   644篇
  2009年   645篇
  2008年   630篇
  2007年   565篇
  2006年   542篇
  2005年   507篇
  2004年   444篇
  2003年   463篇
  2002年   468篇
  2001年   532篇
  2000年   368篇
  1999年   352篇
  1998年   374篇
  1997年   366篇
  1996年   404篇
  1995年   350篇
  1994年   284篇
  1993年   253篇
  1992年   217篇
  1991年   202篇
  1990年   156篇
  1989年   119篇
  1988年   38篇
  1987年   21篇
  1986年   8篇
  1985年   13篇
  1984年   4篇
  1983年   7篇
  1982年   2篇
  1981年   3篇
  1980年   6篇
  1979年   2篇
  1974年   1篇
  1973年   1篇
  1963年   1篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
431.
苏州市一次重霾污染天气过程的数值模拟   总被引:1,自引:1,他引:0  
本文对苏州地区2015年12月13—15日发生的一次典型的重霾污染天气过程进行了数值模拟,分析了颗粒物及其组分的时空变化特征及其气象影响因子,以期为该区域空气污染治理和预防提供科学依据。结果表明:(1)利用WRF-Chem模式对此次重霾污染天气过程的污染气体成分进行数值模拟后发现,小时平均的PM_(2.5)、PM_(10)、CO、SO_2、NO_2模拟值与实测值的相关系数较高,达到0.68以上,通过了P0.01的显著性检验,且日变化过程对应也较好。(2)通过分析此次污染过程的天气背景,发现污染形成期高空环流比较平直,中层为均匀的弱高压控制,地面受弱高压脊控制,这种形势容易导致颗粒物的堆积。后期地面等压线密集时,风速大,有利于污染物的输送与扩散。(3)通过分析此次污染过程期间气象要素的变化发现,有逆温、风速小、相对湿度大等不利的气象条件是导致此次污染过程发生的重要原因之一。(4)HYSPLIT轨迹分析显示,此次重霾过程主要受北方大范围灰霾颗粒物南下影响,北方污染气团逐步南推,14至15日本地大气扩散条件差、污染物累积,最终导致本地污染加重,从而发生重霾事件。(5)火点图的分布进一步验证了此次重霾污染过程是由外来污染气团输入所导致。  相似文献   
432.
彭飞  李晓莉  陈静  李红祺 《气象学报》2019,77(2):180-195
为了体现次网格尺度能量升尺度转换过程中存在的不确定性, 文中将随机动能补偿(Stochastic Kinetic Energy Backscatter, SKEB)方案应用于GRAPES(Global/Regional Assimilation and Prediction System)全球集合预报系统(GRAPES-GEPS), 以更好地表征模式误差并且增大集合离散度。使用的SKEB方案基于具有一定时、空相关特征的随机型以及由数值扩散导致的局地动能耗散率来构造随机流函数强迫。并根据流函数与水平风速旋转分量的关系, 将SKEB方案中的流函数强迫转化为适用于GRAPES全球模式的水平风速扰动。结果表明, SKEB方案的使用一方面能够提高GRAPES对大气动能谱的模拟能力; 另一方面能够改善GRAPES-GEPS的集合离散度与集合平均误差的关系, 增加了集合离散度, 并在一定程度上减小了集合平均误差, 尤其是在热带地区这种改进更为显著。而且该方案使得热带地区连续分级概率评分(CRPS评分)显著减小。就降水预报而言, 从Brier评分与相对作用特征面积(AROC, Area under the Relative Operating Characteristics)的结果来看, SKEB方案有助于改善中国地区小雨[0.1 mm, 10 mm)、中雨[10 mm, 25 mm)与大雨[25 mm, 50 mm)量级降水的概率预报技巧, 而对暴雨[50 mm, ∞)量级降水预报技巧影响很小(24 h降水量)。总体上, 模式扰动随机动能补偿方案提高了GRAPES-GEPS的概率预报技巧。   相似文献   
433.
线性化物理过程对GRAPES 4DVAR同化的影响   总被引:8,自引:3,他引:5  
线性化物理过程能够改善四维变分同化中极小化收敛的稳定性和增加极小化过程中对大气物理过程和动力更加精确的描述,它是四维变分同化中非常重要的一部分。通过在GRAPES全球模式中研究线性化物理过程,尤其是两个湿线性化物理过程,改善切线性模式预报精度,来提高GRAPES全球四维变分同化的分析和预报效果。线性化物理过程的开发首先需要简化原非线性化物理过程中的强非线性项,然后对线性化物理过程进行规约化,以抑制切线性扰动的异常增长。目前GRAEPS全球模式中的线性化物理过程主要包括次网格尺度地形参数化、垂直扩散、积云深对流和大尺度凝结。线性化物理过程预报精度的检验方法是通过选择合适大小的初始扰动(同化分析增量),来比较非线性模式和切线性模式中的扰动演化的纬向平均误差。然后以绝热版本的切线性模式为基础,通过冬、夏两个个例试验来分别检验4个线性化物理过程的12 h预报效果。试验结果表明,通过添加次网格地形参数化和垂直扩散两个干线性化物理过程方案,可以有效抑制住绝热版本切线性模式低层扰动的异常增长,大幅度改善切线性模式预报效果。通过添加积云深对流和大尺度凝结两个湿线性化物理过程,可以在热带区域和中、高纬度地区提高切线性模式中湿变量和温度变量的近似精度,提高GRAPES全球四维变分同化的分析和预报效果。   相似文献   
434.
2016年12月发射升空的FY-4A是中国第二代静止轨道气象卫星,该星上搭载了可提供东半球近实时高分辨率卫星观测数据的扫描辐射成像仪——AGRI(Advanced Geostationary Radiation Imager)。在其观测数据应用于大气参数反演或同化前,数据偏差的定量化分析是一个必要环节。采用快速辐射传输模式RTTOV(Radiative Transfer for the TIROS Operational Vertical Sounder),基于欧洲中期天气预报中心(ECMWF)第5个全球再分析数据产品(ERA5)对AGRI的7个红外通道(通道08—14)进行了模拟,并利用MODIS云检测产品对模拟结果进行了晴空筛选,以期得到一些对AGRI的定量应用有价值的偏差分析结果。观测-模拟(O-B)的偏差分析结果显示:海洋和陆地上,通道10(7.1 μm)存在明显大于其他红外通道的系统性偏差,这很可能来源于ERA5在对流层中层对水汽的高估。通道08为近红外短波通道,地表反射作用影响强烈,陆地上存在较大的平均偏差,而海洋上平均偏差小于0.4 K。通道14在ERA5近地层气温偏高及定标偏差的影响下,海洋存在接近1 K的平均偏差;陆地上存在2 K左右的平均偏差。其余各红外通道在海洋和陆地上的平均偏差分别在0.6和1.3 K以下。偏差影响因子分析结果显示:地表海拔高度、观测天顶角对偏差也存在一定程度的影响;海洋上偏差分布存在季节变化可能来源于再分析资料中海表温度估算的季节性误差。   相似文献   
435.
GRAPES全球奇异向量方法改进及试验分析   总被引:4,自引:0,他引:4  
李晓莉  刘永柱 《气象学报》2019,77(3):552-562
基于总能量模的奇异向量扰动常用于构造集合预报的初始条件。以建立GRAPES(Global and Regional Assimilation PrEdiction System)全球集合预报系统为目的,基于前期研发的GRAPES全球模式奇异向量方法,在GRAPES全球切线性模式和伴随模式2.0版的框架下,开展了引入线性化边界层方案来改善奇异向量结构,并提高奇异向量计算效率的研究。通过连续试验,从奇异向量的扰动能量结构、扰动能量谱及扰动空间分布等方面,综合分析改进GRAPES全球奇异向量的结构及演变特征。试验结果表明,改进后的GRAPES奇异向量方法有效抑制了之前扰动能量在近地面层不合理的快速增长,同时,奇异向量最优扰动的结构更客观地体现了中高纬度区域大气初始条件中的斜压不稳定扰动及其演变,如在初始时刻奇异向量扰动能量主要位于对流层中层,并呈现出随高度向西倾斜的大气斜压特征;经过线性化演变,扰动能量向较大水平尺度转移,并在垂直结构上表现出向对流层高层上传及向对流层低层下传的特征等。针对GRAPES奇异向量迭代求解中伴随模式计算耗时为主的情况,改进伴随模式中广义共轭余差方案的调用方式,并采用大内存存储法来提高其计算效率,进而将奇异向量总计算时间缩短了25%。总之,改进后的GRAPES奇异向量方法,可应用于构建面向业务应用的GRAPES全球集合预报系统。   相似文献   
436.
437.
高分辨率模式雷达回波预报能力分析   总被引:1,自引:1,他引:0  
刘静  才奎志  谭政华 《气象》2019,45(12):1710-1717
利用2018年7—8月GRAPES_3 km、东北短临(WRFRUC)高分辨率模式综合雷达回波预报数据和辽宁省SWAN雷达组合反射率(MCR)实况,基于邻域法FSS评分指数,分析模式在台风北上和副热带高压边缘暴雨过程中的雷达回波预报能力。结果表明:两家模式在不同降水过程中对小阈值雷达回波有较好的预报技巧,随着回波量级增大,模式预报FSS逐渐减小,雷达回波55 dBz时,FSS甚至为0。当邻域半径是3时,35 dBz以下的回波预报中GRAPES模式在台风北上暴雨中的预报技巧低于副热带高压边缘,35 dBz则相反。WRFRUC模式始终表现为台风北上暴雨中预报较好。当邻域半径9时,WRFRUC模式在台风暴雨中的FSS评分高于GRAPES模式,GRAPES模式在副热带高压暴雨中的FSS评分始终高于WRFRUC模式。GRAPES和WRFRUC模式的最大FSS评分技巧均出现在邻域半径是11时,分别为0.239和0.195。GRAPES模式中FSS评分在12 h逐小时预报中前3个时次较强,WRFRUC模式则表现为中间时次强,两头弱。  相似文献   
438.
不同要素谱逼近对高分辨区域数值模式梅雨模拟的改进   总被引:1,自引:0,他引:1  
董美莹  陈锋  冀春晓 《气象》2019,45(5):593-605
为改进高分辨率区域数值天气预报模式雨带模拟偏差,利用WRF模式探讨了不同要素及其组合谱逼近方法对2015年浙江典型梅雨天气预报性能的影响。结果表明:(1)不同单要素逼近对梅雨模拟效果影响差异明显,风场逼近对模拟结果改进较大,高度场逼近对结果略有改善,而温度场逼近主要表现为负效应;风场组合了其他要素的逼近效果与单要素类似,故将水平风场谱逼近确定为最优方案。(2)最优方案对梅雨期间形势场各要素改进程度的排序为纬向风、经向风、相对湿度、温度场和高度场;三个特征层850、500、200 hPa各要素平均的均方根误差(相关系数)分别降低了(增加了)24. 1%(13.6%)、22.7%(21.7%)和13.0%(12.2%);且改进幅度随预报时效的延长而增加,这主要与区域模式内部大尺度系统的误差随积分时间增长有关。(3)典型个例分析显示,最优方案在较好订正低层风场及切变线动力条件的基础上,经过数值模式各物理过程的协同积分也修正了高湿区等关键热力因子,最终改进了高分辨率区域模式的梅雨模拟。  相似文献   
439.
叶小岭  支兴亮  邓华 《气象》2019,45(1):88-98
风能始源于大气的运动,具有很大的随机性和间歇性。风速预测是风电场风功率预测的基础,其准确性具有重要的意义。对于复杂地形条件下,风速的预报一直是各国研究的难点和重点。为了提高风电场短期风速预报的准确性,本研究采用多种边界层参数化方案来集成预报风速,将各单一边界层参数化方案预报的风速及相应的实测风速数据,应用随机森林算法建立集成预报模型,对风电场的短期风速进行集成预报研究。试验结果表明,采用集成预报风速方法,预报的风速误差相比于单一边界层参数化方案预报的风速误差明显减小,对研究区域的风速、风向等气象要素有着较好的模拟效果,能够有效提高风速预报的准确率。  相似文献   
440.
全球变暖的背景下,北极航线的常规通航甚至商业运营有望实现,而海雾会严重影响航道上船只的航行安全。海冰的存在使海气之间相互作用变得更为复杂,是研究北极海雾不可忽略的因素。船载观测发现,与中纬度常见平流冷却雾形成时气温下降速度往往超过海水降温速度不同,北极海雾发生时海冰的存在还会使海水降温速度超过空气降温速度。然而目前海冰分布是否会影响模式模拟海雾的准确性还不得而知,因此本文利用Polar WRF(Polar Weather Research and Forecasting)模式模拟了中国第七次北极考察中观测到的一次海雾过程,并进行海冰密集度敏感性试验。通过与船载观测和欧洲中期天气预报中心再分析数据比对发现,在低浮冰区内(海冰密集度小于50%)考虑海冰分布时可以更加准确地刻画潜热通量与水汽通量,模拟出与观测事实相符的表层空气降温与增湿过程以及相对湿度的变化,因此能够更好地刻画海雾的三维结构及其生消演变。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号