首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   508篇
  免费   189篇
  国内免费   24篇
测绘学   17篇
大气科学   43篇
地球物理   496篇
地质学   67篇
海洋学   60篇
天文学   16篇
综合类   9篇
自然地理   13篇
  2024年   1篇
  2023年   12篇
  2022年   14篇
  2021年   13篇
  2020年   32篇
  2019年   26篇
  2018年   14篇
  2017年   22篇
  2016年   16篇
  2015年   26篇
  2014年   33篇
  2013年   36篇
  2012年   30篇
  2011年   39篇
  2010年   28篇
  2009年   43篇
  2008年   36篇
  2007年   30篇
  2006年   24篇
  2005年   18篇
  2004年   14篇
  2003年   14篇
  2002年   25篇
  2001年   11篇
  2000年   16篇
  1999年   13篇
  1998年   19篇
  1997年   14篇
  1996年   12篇
  1995年   14篇
  1994年   13篇
  1993年   13篇
  1992年   13篇
  1991年   7篇
  1990年   4篇
  1989年   9篇
  1987年   4篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   3篇
  1977年   2篇
  1954年   3篇
排序方式: 共有721条查询结果,搜索用时 9 毫秒
661.
受河口地形等因素的影响,潮汐潮流会出现涨落潮不对称现象,这种不对称对河口物质输运过程具有重要的影响.本研究采用流通量偏度和水位不对称度的统计方法研究辽河口岸线变化对潮波变形的影响.结果表明,辽河口潮汐潮流不对称性表现为涨潮主导型,岸线变化导致涨潮历时延长,落潮历时减小,不对称度缩减了0.007~0.071;岸线变化导致涨潮流速减小,落潮流速增大,流通量偏度缩减了0.000~0.248,岸线变化对潮流不对称的影响程度比对潮汐影响的程度大.  相似文献   
662.
A Navier-Stokes solver in OpenFOAM® is combined with the Volume of Fluid (VOF) surface capturing method to investigate the wave interaction with depth-varying currents in intermediate and shallow waters. A special attention is paid to the separate effect of vertical current shear on near resonant triad wave interactions. It was found that in the presence of following vertical current shear, the wave exhibits a sharper crest and flatter trough, and the opposite is true in the presence of opposing vertical current shear. Our model results indicate that the wave steepness at which the current shear starts to affect the crest elevation is greater in deeper water than in shallower water. We found that adding vertical current shear to the uniform current further enhances the relative harmonic wave energy and the extent of triad interaction in the following current while weakens them in the opposing current. As a result, following and opposing current shear may cause wave to break at a lower and higher sea state respectively. Due to the increased wave nonlinearity in the presence of a following current shear, a linear superposition of the individual wave and current velocities is no longer adequate to represent the total horizontal velocity close to the free surface.  相似文献   
663.
With the increase in demand and supply gap in the oil and gas industry, new developments of oil and gasinfrastructure are moving into deeper water. This requires design and construction of long high temperature and high pressure pipelines from deep sea to shore. These pipelines are subjected to cyclic expansion during operating cycles. Accumulated axial movement due to repeated thermal cycles may lead to global displacement referred to as ‘walking’. Walking rates depend on the restraint associated with seabed friction. In conventional analyses, seabed friction is independent of the rate of thermal loading and expansion but it has been recognised that the sliding resistance between a pipe and the seabed varies with velocity, partly due to drainage effects. In this paper a numerical model is used to explore the effect of velocity-dependent seabed friction. A velocity-dependent friction model is implemented in commercial software ABAQUS and validated via single element and simple (flat seabed) pipeline cases. This model features upper and lower friction limits, with a transition that occurs as an exponential function of velocity. A parametric study is performed using differing rates of heating and cool-down in walking situations driven by seabed slope, SCR end tension and the difference between heat up and cool down rates. The walking behaviour is compared to cases with constant friction and solutions are proposed to express the velocity-dependent response in terms of an equivalent constant friction. These equivalent friction values can then be applied in existing simple solutions or more complex numerical analyses, as a short cut method to account for velocity-dependent friction.  相似文献   
664.
In exploration geophysics, the efforts to extract subsurface information from wave characteristics exceedingly depend on the construction of suitable rock physics model. Analysis of different rock physics models reveals that the strength and magnitude of attenuation and dispersion of propagating wave exceedingly depend on wave-induced fluid flow at multiple scales. In current work, a comprehensive analysis of wave attenuation and velocity dispersion is carried out at broad frequency range. Our methodology is based on Biot's poroelastic relations, by which variations in wave characteristics associated with wave-induced fluid flow due to the coexistence of three fluid phases in the pore volume is estimated. In contrast to the results of previous research, our results indicate the occurrence of two-time pore pressure relaxation phenomenon at the interface between fluids of disparate nature, that is, different bulk modulus, viscosity and density. Also, the obtained results are compatible with numerical results for the same 1D model which are accounted using Biot's poroelastic and quasi-static equation in frequency domain. Moreover, the effects of change in saturation of three-phase fluids were also computed which is the key task for geophysicist. The outcomes of our research reveal that pore pressure relaxation phenomenon significantly depends on the saturation of distinct fluids and the order of saturating fluids. It is also concluded that the change in the saturation of three-phase fluid significantly influences the characteristics of the seismic wave. The analysis of obtained results indicates that our proposed approach is a useful tool for quantification, identification and discrimination of different fluid phases. Moreover, our proposed approach improves the accuracy to predict dispersive behaviour of propagating wave at sub-seismic and seismic frequencies.  相似文献   
665.
In seismic data processing, serious problems could be caused by the existence of triplication and need to be treated properly for tomography and other inversion methods. The triplication in transversely isotropic medium with a vertical symmetry axis has been well studied and concluded that the triplicated traveltime only occurs for S wave and there is no triplication for P and converted PS waves since the P wave convexity slowness always compensates the S wave slowness concavity. Compared with the vertical symmetry axis model, the research of the triplication in transversely isotropic medium with a tilted symmetry axis is still keeping blank. In order to analyse the triplication for the converted wave in the tilted symmetry axis model, we examine the traveltime of the triplication from the curvature of averaged P and S wave slowness. Three models are defined and tested in the numerical examples to illustrate the behaviour of the tilted symmetry axis model for the triplicated traveltime with the change of the rotation angle. Since the orientation of an interface is related to the orientation of the symmetry axis, the triplicated traveltime is encountered for the converted wave in the tilted symmetry axis model assuming interfaces to be planar and horizontal. The triplicated region is influenced by the place and level of the concave curvature of the P and S wave slowness.  相似文献   
666.
INON-EQUILIBRIUMMOVEMENTContinualexchangeremainsamongthebedmaterial,bedloadandsuspendedloadinariver.Thebedloadmovesonthebedsurfaceandjumpsinsteps.Itstransportrateperwidthvarieswithvaryingflowintensity;whilethesuspendedloadmoveswithalongstep,evenifthehydraulicfactorsbecomeweaker,itwillnotretUrntothebeduntilfinishingthefallingprocess.ThismeansthatahysteresisexistsbetWeenthechangeofthesuspendedsedimentmovementandflowvelocity.Foruniformandsteadyflow,thesedimentmovementkeepsinequilibriumi…  相似文献   
667.
The salinity minimum frequently occurring in the Mixed Water Region between the Oyashio and Kuroshio Fronts seems to originate from the salinity minimum at the density of 26.8σθ called the North Pacific Intermediate Water. We examined water exchange of this region with the Oyashio and the Kuroshio Extension using mixing ratio RK defined as (θ - θOY)/(θK - θOY) × 100, where θOY, θK, and θ represent potential temperature of the Oyashio and Kuroshio Waters and their mixture on the isopycnal surfaces, respectively. CTD data were obtained by repeated observation from January 1990 to May 1991. RK increases southward from the Oyashio Front to the Kuroshio Front with the range of −20 to 120%. The gradient of RK on the isopycnal surfaces is large around the Oyashio Front above the 26.8σθ surface, while it is large around the Kuroshio Front below it. This agrees with the average RK in the Mixed Water Region decreasing greatly with the increase of density at densities less dense than 26.8σθ. We calculated thickness and volume transport of the Oyashio between the isopycnal surfaces near the coast of Hokkaido. They increase largely with density at densities less dense than 26.8σθ. It is supposed that the salinity minimum in the Mixed Water Region is the upper limit of the water largely influenced by the Oyashio Water. Its density could depend only on the density structure of the Oyashio.  相似文献   
668.
中国东部海域地壳-上地幔瑞利波速度结构研究   总被引:17,自引:8,他引:9  
为了进一步了解中国东部沿海及相邻海域的地壳-上地幔结构特征,对该区域的构造演化历史、地震活动及深部构造等方面研究提供一些基础资料,利用31个数字地震台记录的高质量瑞利波资料,采用一种新的混合路径频散的网格反演方法(Occam方法),对中国东部海域瑞利波群速度横向不均匀分布进行了初步研究.根据反演得到的10-150s共36个中心周期的群速度分布特征,以及几个典型地点的剪切波速度结构的深度变化,对研究区域内各构造单元的划分以及它们在速度结构和上地幔低速层埋深等方面的特征进行了讨论。  相似文献   
669.
Analytical approximate wave form for asymmetric waves   总被引:1,自引:0,他引:1  
A simple analytical formulation that reproduces a skewed, nonlinear near-bed wave orbital velocity is presented. It contains four free parameters, where two are solely related to the velocity and acceleration skewnesses. The equation is compared with other models and is validated against field and laboratory experiments. The results reveal that it can simulate a wide range of nonlinear wave shapes, reproducing satisfactorily the measured nonlinear wave particle velocity. Also, the new expression overcomes some limitations of the other models. The new formulation is therefore capable of being used in many engineering applications that require the use of representative wave forms.  相似文献   
670.
A nonlinear numerical model has been formulated to study the propagation of a monochromatic surface wave. The model is formulated through the vertical integration of the continuity equation and the equations of motion. This model is investigated for wave propagation, velocity distribution, energy propagation and varying Courant, Friedrichs and Lewy's (CFL) condition. The applicability of this model for both shallow- and deep-water wave is also examined. The results and analyses are shown in details. The results obtained from the model are compared with the Stokes third-order wave theory and with the relevant experimental data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号